circadian clock
Recently Published Documents


TOTAL DOCUMENTS

4883
(FIVE YEARS 1178)

H-INDEX

172
(FIVE YEARS 18)

Author(s):  
Rujia Luo ◽  
Yutao Huang ◽  
Huan Ma ◽  
Jinhu Guo

Intrinsic circadian clocks generate circadian rhythms of physiology and behavior, which provide the capabilities to adapt to cycling environmental cues that result from the self-rotation of the Earth. Circadian misalignment leads to deleterious impacts on adaptation and health in different organisms. The environmental cues on the interplanetary journey to and on Mars dramatically differ from those on Earth. These differences impose numerous adaptive challenges, including challenges for humans’ circadian clock. Thus, adaptation of circadian rhythms to the Martian environment is a prerequisite for future landing and dwelling on Mars. Here, we review the progress of studies associated with the influence of the Martian environment on circadian rhythms and propose directions for further study and potential strategies to improve the adaptation of the circadian clock for future Mars missions.


2022 ◽  
Author(s):  
Ninel Miriam Vainshelbaum ◽  
Kristine Salmina ◽  
Bogdan I Gerashchenko ◽  
Marija Lazovska ◽  
Pawel Zayakin ◽  
...  

The Circadian Clock (CC) drives the normal cell cycle and reciprocally regulates telomere elongation. However, it can be deregulated in cancer, embryonic stem cells (ESC) and the early embryo. Here, its role in the resistance of cancer cells to genotoxic treatments was assessed in relation to whole-genome duplication (WGD) and telomere regulation. We first evaluated the DNA damage response of polyploid cancer cells and observed a similar impact on the cell cycle to that seen in ESC - overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, and coupling telomere erosion to accelerated cell senescence, favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Next, we revealed a positive correlation between cancer WGD and deregulation of CC assessed by bioinformatics on 11 primary cancer datasets (rho=0.83; p<0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by recombination and return their depolyploidised mitotic offspring to TERT-dependent telomere regulation. Through depolyploidisation and the CC "death loop", the telomeres and Hayflick limit count are thus again renewed. This mechanism along with similar inactivity of the CC in early embryos supports a life-cycle (embryonic) concept of cancer.


2022 ◽  
Vol 8 (4) ◽  
pp. 238-242
Author(s):  
Shoheb S Shaikh ◽  
Sachin M Kokate

Daily rhythmic variations in biological functions affect the efficacy and/or toxicity of drugs: a large number of drugs cannot be expected to exhibit the same potency at different administration times. The “circadian clock” is an endogenous timing system that broadly regulates metabolism, physiology and behavior. In mammals, this clock governs the oscillatory expression of the majority of genes with a period length of approximately 24 h. Genetic studies have revealed that molecular components of the circadian clock regulate the expression of genes responsible for the sensitivity to drugs and their disposition. The circadian control of pharmacodynamics and pharmacokinetics enables ‘chrono-pharmaceutical’ applications, namely drug administration at appropriate times of day to optimize the therapeutic index (efficacy vs. toxicity). On the other hand, a variety of pathological conditions also exhibit marked day-night changes in symptom intensity. Currently, novel therapeutic approaches are facilitated by the development of chemical compound targeted to key proteins that cause circadian exacerbation of disease events. This review presents an overview of the current understanding of the role of the circadian biological clock in regulating drug efficacy and disease conditions, and also describes the importance of identifying the difference in the circadian machinery between diurnal and nocturnal animals to select the most appropriate times of day to administer drugs in humans.


2022 ◽  
Author(s):  
Yanli Xiang ◽  
Thomas Sapir ◽  
Pauline Rouillard ◽  
Marina Ferrand ◽  
Jose M Jimenez-Gomez

Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust to the time of the year. Modification of circadian clocks is especially relevant in crops to enhance their cultivability in specific regions by changing their sensibility to photoperiod. In tomato, the appearance of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) during domestication delayed its circadian rhythms, and allowed its expansion outside its equatorial origin. Here we study how variation in circadian rhythms in tomato affects its perception of photoperiod. To do this, we create near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and perform transcriptomic profiling under two different photoperiods. We observe that EID1, but not LNK2, has a large effect on the tomato transcriptome and its response to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms.


2022 ◽  
Vol 23 (2) ◽  
pp. 729
Author(s):  
Anna Ashton ◽  
Russell G. Foster ◽  
Aarti Jagannath

Circadian rhythms are essential for the survival of all organisms, enabling them to predict daily changes in the environment and time their behaviour appropriately. The molecular basis of such rhythms is the circadian clock, a self-sustaining molecular oscillator comprising a transcriptional–translational feedback loop. This must be continually readjusted to remain in alignment with the external world through a process termed entrainment, in which the phase of the master circadian clock in the suprachiasmatic nuclei (SCN) is adjusted in response to external time cues. In mammals, the primary time cue, or “zeitgeber”, is light, which inputs directly to the SCN where it is integrated with additional non-photic zeitgebers. The molecular mechanisms underlying photic entrainment are complex, comprising a number of regulatory factors. This review will outline the photoreception pathways mediating photic entrainment, and our current understanding of the molecular pathways that drive it in the SCN.


2022 ◽  
Vol 23 (2) ◽  
pp. 709
Author(s):  
Agata Gabryelska ◽  
Szymon Turkiewicz ◽  
Filip Franciszek Karuga ◽  
Marcin Sochal ◽  
Dominik Strzelecki ◽  
...  

Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hadi Zadeh-Haghighi ◽  
Christoph Simon

AbstractDrosophila’s circadian clock can be perturbed by magnetic fields, as well as by lithium administration. Cryptochromes are critical for the circadian clock. Further, the radical pairs in cryptochrome also can explain magnetoreception in animals. Based on a simple radical pair mechanism model of the animal magnetic compass, we show that both magnetic fields and lithium can influence the spin dynamics of the naturally occurring radical pairs and hence modulate the circadian clock’s rhythms. Using a simple chemical oscillator model for the circadian clock, we show that the spin dynamics influence a rate in the chemical oscillator model, which translates into a change in the circadian period. Our model can reproduce the results of two independent experiments, magnetic field and lithium effects on the circadian clock. Our model predicts that stronger magnetic fields would shorten the clock’s period. We also predict that lithium influences the clock in an isotope-dependent manner. Furthermore, our model also predicts that magnetic fields and hyperfine interactions modulate oxidative stress. The findings of this work suggest that the quantum nature of radical pairs might play roles in the brain, as another piece of evidence in addition to recent results on xenon anesthesia and lithium effects on hyperactivity.


2022 ◽  
Author(s):  
Meaghan S. Jankowski ◽  
Daniel Griffith ◽  
Divya G. Shastry ◽  
Jacqueline F. Pelham ◽  
Garrett M. Ginell ◽  
...  

The circadian clock times cellular processes to the day/night cycle via a Transcription-Translation negative Feedback Loop (TTFL). However, a mechanistic understanding of the negative arm in both the timing of the TTFL and its control of output is lacking. We posited that the formation of negative-arm protein complexes was fundamental to clock regulation stemming from the negative arm. Using a modified peptide microarray approach termed Linear motif discovery using rational design (LOCATE), we characterized the interaction of the disordered negative-arm clock protein FREQUENCY to its partner protein FREQUENCY-Interacting RNA helicase. LOCATE identified a specific Short Linear Motif (SLiM) and interaction hotspot as well as positively charged islands that mediate electrostatic interactions, suggesting a model where negative arm proteins form a fuzzy complex essential for clock timing and robustness. Further analysis revealed that the positively charged islands were an evolutionarily conserved feature in higher eukaryotes and contributed to proper clock function.


Sign in / Sign up

Export Citation Format

Share Document