scholarly journals Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective (Delta-f508) cystic fibrosis transmembrane conductance regulator

Hepatology ◽  
1998 ◽  
Vol 27 (1) ◽  
pp. 7-14 ◽  
Author(s):  
K. Ramakrishnan Bhaskar ◽  
Bradley S. Turner ◽  
Shelley A. Grubman ◽  
Douglas M. Jefferson ◽  
J.Thomas LaMont
2006 ◽  
Vol 189 (1) ◽  
pp. 155-165 ◽  
Author(s):  
H J Novaira ◽  
D S Ornellas ◽  
T M Ortiga-Carvalho ◽  
X M Zhang ◽  
J Souza-Menezes ◽  
...  

The cystic fibrosis transmembrane conductance regulator (CFTR) is one of the most intensively investigated Cl− channels. Different mutations in the CFTR gene cause the disease cystic fibrosis (CF). CFTR is expressed in the apical membrane of various epithelial cells including the intestine. The major organ affected in CF patients is the lung, but it also causes an important dysfunction of intestinal ion transport. The modulation of CFTR mRNA expression by atrial natriuretic peptide (ANP) was investigated in rat proximal colon and in human intestinal CaCo-2 cells by RNase protection assay and semi-quantitative reverse transcriptase PCR techniques. Groups of rats subjected to volume expansion or intravenous infusion of synthetic ANP showed respective increases of 60 and 50% of CFTR mRNA expression in proximal colon. CFTR mRNA was also increased in cells treated with ANP, reaching a maximum effect at 10−9 M ANP, probably via cGMP. ANP at 10−9 M was also able to stimulate both the CFTR promoter region (by luciferase assay) and protein expression in CaCo-2 cells (by Western blot and immunoprecipitation/phosphorylation). These results suggested the involvement of ANP, a hormone involved with extracellular volume, in the expression of CFTR in rat proximal colon and CaCo-2 intestinal cells.


2011 ◽  
Vol 301 (4) ◽  
pp. L557-L567 ◽  
Author(s):  
Ahmed Lazrak ◽  
Asta Jurkuvenaite ◽  
Lan Chen ◽  
Kim M. Keeling ◽  
James F. Collawn ◽  
...  

We sought to establish whether the cystic fibrosis transmembrane conductance regulator (CFTR) regulates the activity of amiloride-sensitive sodium channels (ENaC) in alveolar epithelial cells of wild-type, heterozygous ( Cftr +/−), knockout ( Cftr −/−), and ΔF508-expressing mice in situ. RT-PCR studies confirmed the presence of CFTR message in freshly isolated alveolar type II (ATII) cells from wild-type mice. We patched alveolar type I (ATI) and ATII cells in freshly prepared lung slices from these mice and demonstrated the presence of 4-pS ENaC channels with the following basal open probabilities (Po): wild-type=0.21 ± 0.015: Cftr +/−=0.4 ± 0.03; ΔF508=0.55 ± 0.01; and Cftr −/−=and 0.81 ± 0.016 (means ± SE; n ≥ 9). Forskolin (5 μM) or trypsin (2 μM), applied in the pipette solution, increased the Po and number of channels in ATII cells of wild-type, Cftr +/−, and ΔF508, but not in Cftr −/− mice, suggesting that the latter were maximally activated. Western blot analysis showed that lungs of all groups of mice had similar levels of α-ENaC; however, lungs of Cftr +/− and Cftr −/− mice had significantly higher levels of an α-ENaC proteolytic fragment (65 kDa) that is associated with active ENaC channels. Our results indicate that ENaC activity is inversely correlated to predicted CFTR levels and that CFTR heterozygous and homozygous mice have higher levels of proteolytically processed ENaC fragments in their lungs. This is the first demonstration of functional ENaC-CFTR interactions in alveolar epithelial cells in situ.


Sign in / Sign up

Export Citation Format

Share Document