alveolar epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

2030
(FIVE YEARS 540)

H-INDEX

89
(FIVE YEARS 13)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Bin-Fei Zhang ◽  
Wei Song ◽  
Jun Wang ◽  
Peng-Fei Wen ◽  
Yu-Min Zhang

Abstract Objectives The lung injury is often secondary to severe trauma. In the model of crush syndrome, there may be secondary lung injury. We hypothesize that high-mobility group box 1 (HMGB1), released from muscle tissue, mediates the apoptosis of alveolar epithelial cells (AEC) via HMGB1/Receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway. The study aimed to investigate how HMGB1 mediated the apoptosis of AEC in the rat model. Methods Seventy-five SD male rats were randomly divided into five groups: CS, CS + vehicle, CS + Ethyl pyruvate (EP), CS + FPS-ZM1 group, and CS + SP600125 groups. When the rats CS model were completed after 24 h, the rats were sacrificed. We collected the serum and the whole lung tissues. Inflammatory cytokines were measured in serum samples. Western blot and RT-qPCR were used to quantify the protein and mRNA. Lastly, apoptotic cells were detected by TUNEL. We used SPSS 25.0 for statistical analyses. Results Nine rats died during the experiments. Dead rats were excluded from further analysis. Compared to the CS group, levels of HMGB1 and inflammatory cytokines in serum were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Western blot and RT-qPCR analysis revealed a significant downregulation of HMGB1, RAGE, and phosphorylated-JNK in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups, compared with the CS groups, excluding total-JNK mRNA. Apoptosis of AEC was used TUNEL to assess. We found the TUNEL-positive cells were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Conclusion The remote lung injury begins early after crush injuries. The HMGB1/RAGE/JNK signaling axis is an attractive target to abrogate the apoptosis of AEC after crush injuries.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lulin Rao ◽  
Yaoguang Sheng ◽  
Jiao Zhang ◽  
Yanlei Xu ◽  
Jingyi Yu ◽  
...  

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) has augmented due to the abuse of antibiotics, bringing about difficulties in the treatment of infection especially with the formation of biofilm. Thus, it is essential to develop antimicrobials. Here we synthesized a novel small-molecule compound, which we termed SYG-180-2-2 (C21H16N2OSe), that had antibiofilm activity. The aim of this study was to demonstrate the antibiofilm effect of SYG-180-2-2 against clinical MRSA isolates at a subinhibitory concentration (4 μg/ml). In this study, it was showed that significant suppression in biofilm formation occurred with SYG-180-2-2 treatment, the inhibition ranged between 65.0 and 85.2%. Subsequently, confocal laser scanning microscopy and a bacterial biofilm metabolism activity assay further demonstrated that SYG-180-2-2 could suppress biofilm. Additionally, SYG-180-2-2 reduced bacterial adhesion and polysaccharide intercellular adhesin (PIA) production. It was found that the expression of icaA and other biofilm-related genes were downregulated as evaluated by RT-qPCR. At the same time, icaR and codY were upregulated when biofilms were treated with SYG-180-2-2. Based on the above results, we speculate that SYG-180-2-2 inhibits the formation of biofilm by affecting cell adhesion and the expression of genes related to PIA production. Above all, SYG-180-2-2 had no toxic effects on human normal alveolar epithelial cells BEAS-2B. Collectively, the small-molecule compound SYG-180-2-2 is a safe and effective antibacterial agent for inhibiting MRSA biofilm.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lynnlee Depicolzuane ◽  
David S. Phelps ◽  
Joanna Floros

Pulmonary surfactant proteins have many roles in surfactant- related functions and innate immunity. One of these proteins is the surfactant protein A (SP-A) that plays a role in both surfactant-related processes and host defense and is the focus in this review. SP-A interacts with the sentinel host defense cell in the alveolus, the alveolar macrophage (AM), to modulate its function and expression profile under various conditions, as well as other alveolar epithelial cells such as the Type II cell. Via these interactions, SP-A has an impact on the alveolar microenvironment. SP-A is also important for surfactant structure and function. Much of what is understood of the function of SP-A and its various roles in lung health has been learned from SP-A knockout (KO) mouse experiments, as reviewed here. A vast majority of this work has been done with infection models that are bacterial, viral, and fungal in nature. Other models have also been used, including those of bleomycin-induced lung injury and ozone-induced oxidative stress either alone or in combination with an infectious agent, bone marrow transplantation, and other. In addition, models investigating the effects of SP-A on surfactant components or surfactant structure have contributed important information. SP-A also appears to play a role in pathways involved in sex differences in response to infection and/or oxidative stress, as well as at baseline conditions. To date, this is the first review to provide a comprehensive report of the functions of SP-A as learned through KO mice.


2022 ◽  
Vol 21 (1) ◽  
pp. 19-23
Author(s):  
Nagalakshmi CS ◽  
Shaheen B Shaikh ◽  
Santhosh NU

Background: COVID-19 is a rapidly spreading communicable disease worldwide. It varies widely in its spectrum of manifestations, from being mild self-limiting disease, to fulminant disease, often leading to complications and death. Diabetes is an important co-morbidity linked to severity of infection by SARSCoV- 2, which predisposes them to severe pneumonia. Poor glycaemic control is associated with worse outcomes. The disease burden of COVID-19 is continuously increasing, and with a high prevalence of diabetes, it is all the more important to understand the vital aspects of COVID-19 infection in diabetic population. Hence, we try to provide close insights into its pathophysiology, clinical characteristics, recommendations on management and prevention and possible avenues for improving disease outcomes. Methods: PubMed database and Google Scholar were searched using the key terms ‘COVID-19’, ‘SARS CoV- 2’, ‘Corona’ and ‘diabetes’. Full texts of the retrieved articles were accessed and referred. Three main mechanisms which influence COVID-19 disease manifestation in diabetics include: (a) Entry of virus via ACE-2 receptors (b) Action through Dipeptidyl-peptidase-4, and (c) Elevation of glucose concentration in airways by elevated blood glucose.ACE-2 is expressed in alveolar epithelial cells, heart, renal-tubular and intestinal epithelia and pancreas. S-Glycoprotein on the surface of SARS-CoV-2 binds to this ACE-2 and undergoes a conformational change. This allows its’ proteolytic digestion by host cell proteases TMPRSS2 and Furin, leading to internalization of virus. Viral entry into cells triggers an inflammatory response by T-helper-cells and at times, a ‘cytokine storm’, resulting in organ damage. Apart from diminishing neutrophil chemotaxis and reducing phagocytosis, by which diabetes predisposes individuals to infections, there are several specific factors with respect to SARS-CoV2: (i) Increased ACE-2 expression (ii) Raised Furin (iii) Diminished T-cell functioning, and (iv) Increased IL-6 levels. Movement restrictions, increased stress due to social isolation and lack of physical activity further complicates the issue. It is therefore, much essential to raise awareness among front-line workers. Finally, the current situation emphasizes the need for more clinical investigation and define best practices for optimum outcomes. Bangladesh Journal of Medical Science Vol. 21(1) 2022 Page : 19-23


2021 ◽  
Vol 14 (4) ◽  
pp. 1955-1964
Author(s):  
Tarso Rudiana ◽  
Nani Suryani ◽  
Dimas D. Indriatmoko ◽  
Yusransyah Yusransyah ◽  
Muhammad A. Hardiyanto ◽  
...  

Gandaria (Bouea macrophylla Griff) is a typical Asian plant that is commonly found in In-donesia with various secondary metabolite compounds such as phenolic, flavonoid and ter-penoid. The purpose of this study was to isolate secondary metabolites from the stem extract of B. macrophylla and determine their activity against cancer cells MCF-7, A549, MDA-MB 231 and HCC-1954. The isolation of the compounds was conducted using various chromatographic techniques, the determination of the chemical structure of the isolates was performed using physicochemical methods including mass spectrometer and nuclear magnetic resonance, the determination of anticancer activity was carried out using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) i.e. MCF-7 and A549 cell lines; and dimetiltiazol-2-il) -2,5-diphenyltetrazolium bromide (MTT) for MDA-MB 231 and HCC-1954 cell lines. Four compounds namely stigmasterol (1), fustin (2), garbanzol (3) and methyl galat (4) were successfully isolated from the stem extract of B. macrophylla, which was obtained from Serang Regency, Indonesia. These compounds were then tested their anticancer activity against the cancer cells of Michigan Cancer Foundation-7 (MCF-7), human alveolar epithelial cells (A549), human breast cancer cell line-1954 (HCC-1954) and M.D. Anderson-Metastatic Breast-231 (MDA-MB-231). The results of anticancer test indicated that based on the IC50 values for all compounds tested, the compounds 2 and 4 were more active on HCC-1954 cell with IC50 values of 134.35 ± 44.62 and 153.69 ± 12.54 µg/mL, respectively, while the compound 3 was found to be the most active against MDA-MB-231 cell line with IC50 value of 233.41 ± 91.57 µg/mL


2021 ◽  
Vol 12 ◽  
Author(s):  
Shivanthan Shanthikumar ◽  
Melanie R. Neeland ◽  
Richard Saffery ◽  
Sarath C. Ranganathan ◽  
Alicia Oshlack ◽  
...  

In epigenome-wide association studies analysing DNA methylation from samples containing multiple cell types, it is essential to adjust the analysis for cell type composition. One well established strategy for achieving this is reference-based cell type deconvolution, which relies on knowledge of the DNA methylation profiles of purified constituent cell types. These are then used to estimate the cell type proportions of each sample, which can then be incorporated to adjust the association analysis. Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and contains a mixture of different cell types that can vary in proportion across samples, affecting the overall methylation profile. A current barrier to the use of bronchoalveolar lavage in DNA methylation-based research is the lack of reference DNA methylation profiles for each of the constituent cell types, thus making reference-based cell composition estimation difficult. Herein, we use bronchoalveolar lavage samples collected from children with cystic fibrosis to define DNA methylation profiles for the four most common and clinically relevant cell types: alveolar macrophages, granulocytes, lymphocytes and alveolar epithelial cells. We then demonstrate the use of these methylation profiles in conjunction with an established reference-based methylation deconvolution method to estimate the cell type composition of two different tissue types; a publicly available dataset derived from artificial blood-based cell mixtures and further bronchoalveolar lavage samples. The reference DNA methylation profiles developed in this work can be used for future reference-based cell type composition estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies examining the role of DNA methylation in lung health and disease.


Author(s):  
Debbie Clements ◽  
Suzanne Miller ◽  
Roya Babaei-Jadidi ◽  
Mike Adam ◽  
S. Steven Potter ◽  
...  

Lymphangioleiomyomatosis (LAM) is a female specific cystic lung disease in which TSC2 deficient LAM cells, LAM-Associated Fibroblasts (LAFs) and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial cells (AT2 cells). We hypothesised that the behaviour of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared to parenchymal AT2 cells, demonstrated by increased Ki67 expression. Further, nodular AT2 cells express proteins associated with epithelial activation in other disease states including Matrix Metalloproteinase 7, and Fibroblast Growth Factor 7 (FGF7). In vitro, LAF conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, which is a potential mediator of fibroblast-epithelial crosstalk, in an mTOR dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and that fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behaviour. Fibroblast-derived FGF7 may contribute to the cross-talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaoyu Xu ◽  
Wen Deng ◽  
Wanqing Zhang ◽  
Junhua Zhang ◽  
Muchen Wang ◽  
...  

The increasing use of moxibustion has led to a debate concerning the safety of this treatment in human patients. Inhalation of cigarette smoke induces lung inflammation and granulomas, the proliferation of alveolar epithelial cells, and other toxic effects; therefore, it is important to assess the influence of inhaled moxa smoke on the lungs. In the present study, a novel poisoning cabinet was designed and used to assess the acute toxicity of moxa smoke in rats. We evaluated pathological changes in rat lung tissue and analyzed differentially expressed genes (DEGs) using RNA-seq and transcriptomic analyses. Our results show that the maximum tolerable dose of moxa smoke was 290.036 g/m³ and LC50 was 537.65 g/m³. Compared with that of the control group, the degree of inflammatory cell infiltration in the lung tissues of group A rats (all dead group) was increased, while that in group E rats (all live group) remained unchanged. GO and KEGG enrichment analyses showed that the DEGs implicated in cell components, binding, and cancer were significantly enriched in the experimental groups compared with the profile of the control group. The expressions of MAFF, HSPA1B, HSPA1A, AOC1, and MX2 determined using quantitative real-time PCR were similar to those determined using RNA-seq, confirming the reliability of RNA-seq data. Overall, our results provide a basis for future evaluations of moxibustion safety and the development of moxibustion-based technology.


Sign in / Sign up

Export Citation Format

Share Document