scholarly journals Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors

Hepatology ◽  
1999 ◽  
Vol 30 (5) ◽  
pp. 1276-1286 ◽  
Author(s):  
Peter A. G. McCourt ◽  
Bård H. Smedsrød ◽  
Jukka Melkko ◽  
Staffan Johansson
1994 ◽  
Vol 210 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Sebastiaan Esbach ◽  
Monique F. Stins ◽  
Adriaan Brouwer ◽  
Paul J.M. Roholl ◽  
Theo J.C. van Berkel ◽  
...  

1989 ◽  
Vol 258 (2) ◽  
pp. 511-520 ◽  
Author(s):  
W Eskild ◽  
G M Kindberg ◽  
B Smedsrød ◽  
R Blomhoff ◽  
K R Norum ◽  
...  

Endocytosis of formaldehyde-treated serum albumin (FSA) mediated by the scavenger receptor was studied in rat liver endothelial cells. Suspended cells had about 8000 receptors/cell, whereas cultured cells had about 19,000 receptors/cell. Kd was 10(-8) M in both systems. Cell-surface scavenger receptors were found exclusively in coated pits by electron microscopy, by using ligand labelled with colloidal gold. Cell-surface-bound FSA could be released by decreasing the pH to 6.0; it was therefore possible to assess the rate of internalization of surface-bound ligand. This rate was very high: t1/2 for internalization of ligand prebound at 4 degrees C was 24 s. The endocytic rate constant at 37 degrees C, Ke, measured as described by Wiley & Cunningham [(1982) J. Biol. Chem. 257, 4222-4229], was 2.44 min-1, corresponding to t1/2 = 12 s. Uptake of FSA at 37 degrees C after destruction of one cell-surface pool of receptors by Pronase was decreased to 60%. This finding is compatible with a relatively large intracellular pool of receptors. The intracellular handling of 125I-tyramine-cellobiose-labelled FSA (125I-TC-FSA) was studied by subcellular fractionation in sucrose gradients, Nycodenz gradients or by differential centrifugation. The density distributions of degraded and undegraded 125I-TC-FSA after fractionation of isolated non-parenchymal cells and whole liver were similar, when studied in Nycodenz and sucrose gradients, suggesting that the subcellular distribution of the ligand was not influenced by the huge excess of non-endothelial material in a whole liver homogenate. Fractionation in sucrose gradients showed that the ligand was sequentially associated with organelles banding at 1.14, 1.17 and 1.21 g/ml. At 9-12 min after intravenous injection the ligand was in a degradative compartment, as indicated by the accumulation of acid-soluble radioactivity at 1.21 g/ml. A rapid transfer of ligand to the lysosomes was also indicated by the finding that a substantial proportion of the ligand could be degraded by incubating mitochondrial fractions prepared 12 min after intravenous injection of the ligand. The results indicate that FSA is very rapidly internalized and transferred through an endosomal compartment to the lysosomes. The endosomes are gradually converted into lysosomes between 9 and 12 min after injection of FSA. The rate-limiting step in the intracellular handling of 125I-TC-FSA is the degradation in the lysosomes.


1998 ◽  
Vol 66 (11) ◽  
pp. 5107-5112 ◽  
Author(s):  
Marijke van Oosten ◽  
Erika van de Bilt ◽  
Theo J. C. van Berkel ◽  
Johan Kuiper

ABSTRACT Lipopolysaccharide (LPS) is cleared from the blood mainly by the liver. The Kupffer cells are primarily responsible for this clearance; liver endothelial and parenchymal cells contribute to a lesser extent. Although several binding sites have been described, only CD14 is known to be involved in LPS signalling. Among the other LPS binding sites that have been identified are scavenger receptors. Scavenger receptor class A (SR-A) types I and II are expressed in the liver on endothelial cells and Kupffer cells, and a 95-kDa receptor, identified as macrosialin, is expressed on Kupffer cells. In this study, we examined the role of scavenger receptors in the binding of LPS by the liver in vivo and in vitro. Fucoidin, a scavenger receptor ligand, significantly reduced the clearance of 125I-LPS from the serum and decreased the liver uptake of 125I-LPS about 40%. Within the liver, the in vivo binding of 125I-LPS to Kupffer and liver endothelial cells was decreased 72 and 71%, respectively, while the binding of 125I-LPS to liver parenchymal cells increased 34% upon fucoidin preinjection. Poly(I) inhibited the binding of 125I-LPS to Kupffer and endothelial cells in vitro 73 and 78%, respectively, while poly(A) had no effect. LPS inhibited the binding of acetylated low-density lipoprotein (acLDL) to Kupffer and liver endothelial cells 40 and 55%, respectively, and the binding of oxidized LDL (oxLDL) to Kupffer and liver endothelial cells 65 and 61%, respectively. oxLDL and acLDL did not significantly inhibit the binding of LPS to these cells. We conclude that on both endothelial cells and Kupffer cells, LPS binds mainly to scavenger receptors, but SR-A and macrosialin contribute to a limited extent to the binding of LPS.


2005 ◽  
Vol 68 (5) ◽  
pp. 1423-1430 ◽  
Author(s):  
Michael J. Duryee ◽  
Thomas L. Freeman ◽  
Monte S. Willis ◽  
Carlos D. Hunter ◽  
Bartlett C. Hamilton ◽  
...  

1993 ◽  
Vol 205 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Sigurdur Magnusson ◽  
Rune Kjeken ◽  
Trond Berg

2000 ◽  
Vol 113 (18) ◽  
pp. 3255-3266
Author(s):  
T. Lovdal ◽  
E. Andersen ◽  
A. Brech ◽  
T. Berg

Soluble circulating immunoglobulin G immune complexes are mainly eliminated by the liver, predominantly by uptake in the Kupffer cells, but also the liver endothelial cells seem to be of importance. In the present study we have followed the intracellular turnover of immune complexes after Fc(gamma) receptor mediated endocytosis in cultured rat liver endothelial cells and Kupffer cells by means of isopycnic centrifugation, DAB cross-linking and morphological techniques. For the biochemical experiments the antigen, dinitrophenylated bovine serum albumin (BSA), was labeled with radioiodinated tyramine cellobiose that cannot cross biological membranes and therefore traps labeled degradation products at the site of formation. The endocytic pathway followed by immune complexes was compared with that followed by scavenger receptor ligands, such as formaldehyde treated BSA and dinitrophenylated BSA, and the mannose receptor ligand ovalbumin. Both Kupffer cells and liver endothelial cells took up and degraded the immune complexes, but there was a clear delay in the degradation of immune complexes as compared to degradation of ligands taken up via scavenger receptors. The kinetics of the endocytosis of scavenger receptor ligand was unaffected by simultaneous uptake of immune complexes. Experiments using both biochemical and morphological techniques indicated that the delayed degradation was due to a late arrival of the immune complexes at the lysosomes, which partly was explained by retroendocytosis of immune complexes. Electron microscopy studies revealed that the immune complexes were retained in the early endosomes that remained accessible to other endocytic markers such as ovalbumin. In addition, the immune complexes were seen in multivesicular compartments apparently devoid of other endocytic markers. Finally, the immune complexes were degraded in the same lysosomes as the ligands of scavenger receptors. Thus, immune complexes seem to follow an endocytic pathway that is kinetically or maybe morphologically different from that followed by scavenger and mannose receptor ligands.


2000 ◽  
Vol 37 (1) ◽  
pp. 85-95 ◽  
Author(s):  
E Sinzelle ◽  
J P Duong Van Huyen ◽  
S Breiteneder-Geleff ◽  
E Braunberger ◽  
A Deloche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document