The role of the ventral dentate gyrus in olfactory pattern separation

Hippocampus ◽  
2014 ◽  
Vol 24 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Christy S. S. Weeden ◽  
Nathan J. Hu ◽  
Liana U. N. Ho ◽  
Raymond P. Kesner
2020 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

Abstract Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


2015 ◽  
Vol 25 ◽  
pp. S330-S331
Author(s):  
I. Lange ◽  
L. Goossens ◽  
S. Lissek ◽  
T. Van Amelsvoort ◽  
K. Schruers

2018 ◽  
Author(s):  
John J. Sakon ◽  
Wendy A. Suzuki

AbstractThe CA3 and dentate gyrus (DG) regions of the hippocampus are considered key for disambiguating sensory inputs from similar experiences in memory, a process termed pattern separation. The neural mechanisms underlying pattern separation, however, have been difficult to compare across species: rodents offer robust recording methods with less human-centric tasks while humans provide complex behavior with less recording potential. To overcome these limitations, we trained monkeys to perform a visual pattern separation task similar to those used in humans while recording activity from single CA3/DG neurons. We find that when animals discriminate recently seen novel images from similar (lure) images, behavior indicative of pattern separation, CA3/DG neurons respond to lure images more like novel than repeat images. Using a population of these neurons, we are able to classify novel, lure, and repeat images from each other using this pattern of firing rates. Notably, one subpopulation of these neurons is more responsible for distinguishing lures and repeats—the key discrimination indicative of pattern separation.


Sign in / Sign up

Export Citation Format

Share Document