complex behavior
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 106)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Joachim Krug ◽  
Alexander Klug

Many effects attributed to recombination have been invoked to explain the advantage of sex. The most prominent arguments focus on either evolvability, genetic diversity, or mutational robustness to justify why the benefit of recombination overcomes its costs, with partially contradicting results. As a consequence, understanding which aspects of recombination are most important in a given situation remains an open problem for theoretical and experimental research. In this study, we focus on finite populations evolving on neutral networks, which already display remarkably complex behavior. We aim to provide a comprehensive overview of the effects of recombination by jointly considering different measures of evolvability, genetic diversity, and mutational robustness over a broad parameter range, such that many evolutionary regimes are covered. We find that several of these measures vary non-monotonically with the rates of mutation and recombination. Moreover, the presence of lethal genotypes that introduce inhomogeneities in the network of viable states qualitatively alters the effects of recombination. We conclude that conflicting trends induced by recombination can be explained by an emerging trade-off between evolvability and genetic diversity on the one hand, and mutational robustness and fitness on the other. Finally, we discuss how different implementations of the recombination scheme in theoretical models can affect the observed dependence on recombination rate through a coupling between recombination and genetic drift.


2021 ◽  
Vol 1 (2) ◽  
pp. 33-39
Author(s):  
Mónika Farsang ◽  
Luca Szegletes

Learning the optimal behavior is the ultimate goal in reinforcement learning. This can be achieved by many different approaches, the most successful of them are policy gradient methods. However, they can suffer from undesirably large updates of policies, leading to poor performance. In recent years there has been a clear trend toward designing more reliable algorithms. This paper addresses to examine different restriction strategies applied to the widely used Proximal Policy Optimization (PPO-Clip) technique. We also question whether the analyzed methods are able to adapt not only to low-dimensional tasks but also to complex, high-dimensional problems in control and robotic domains. The analysis of the learned behavior shows that these methods can lead to better performance compared to the original PPO-Clip algorithm, moreover, they are also able to achieve complex behavior and policies in high-dimensional environments.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunil Kumar ◽  
R.P. Chauhan ◽  
Shaher Momani ◽  
Samir Hadid

Purpose This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control. Design/methodology/approach The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems. Findings Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved. Originality/value This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.


2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1350
Author(s):  
Tho Nguyen Duc ◽  
Chanh Minh Tran ◽  
Phan Xuan Tan ◽  
Eiji Kamioka

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.


Author(s):  
Zhen Wang ◽  
Sajjad Shaukat Jamal ◽  
Baonan Yang ◽  
Viet-Thanh Pham

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ann S. Blevins ◽  
Jason Z. Kim ◽  
Dani S. Bassett

AbstractThe complex behavior of many real-world systems depends on a network of both strong and weak edges. Distinguishing between true weak edges and low-weight edges caused by noise is a common problem in data analysis, and solutions tend to either remove noise or study noise in the absence of data. In this work, we instead study how noise and data coexist, by examining the structure of noisy, weak edges that have been synthetically added to model networks. We find that the structure of low-weight, noisy edges varies according to the topology of the model network to which it is added, that at least three qualitative classes of noise structure emerge, and that these noisy edges can be used to classify the model networks. Our results demonstrate that noise does not present as a monolithic nuisance, but rather as a nuanced, topology-dependent, and even useful entity in characterizing higher-order network interactions.


2021 ◽  
Author(s):  
Katharina Merten ◽  
Robert W Folk ◽  
Daniela Duarte ◽  
Axel Nimmerjahn

Astrocytes, glial cells of the central nervous system, help to regulate neural circuit operation and adaptation. They exhibit complex forms of chemical excitation, most prominently calcium transients, evoked by neuromodulator and -transmitter receptor activation. However, whether and how astrocytes contribute to cortical processing of complex behavior remains unknown. One of the puzzling features of astrocyte calcium transients is the high degree of variability in their spatial and temporal patterns under behaving conditions. Here, we provide mechanistic links between astrocytes' activity patterns, molecular signaling, and behavioral cognitive and motor activity variables by employing a visual detection task that allows for in vivo calcium imaging, robust statistical analyses, and machine learning approaches. We show that trial type and performance levels deterministically shape astrocytes' spatial and temporal response properties. Astrocytes encode the animals' decision, reward, and sensory properties. Our error analysis confirms that astrocytes carry behaviorally relevant information depending on and complementing neuronal coding. We also report that cell-intrinsic mechanisms curb astrocyte calcium activity. Additionally, we show that motor activity-related parameters strongly impact astrocyte responses and must be considered in sensorimotor study designs. Our data inform and constrain current models of astrocytes' contribution to complex behavior and brain computation beyond their established homeostatic and metabolic roles.


2021 ◽  
Author(s):  
Gabriel Kalweit ◽  
Maria Huegle ◽  
Moritz Werling ◽  
Joschka Boedecker

Fractals ◽  
2021 ◽  
pp. 2240005
Author(s):  
SHABIR AHMAD ◽  
AMAN ULLAH ◽  
ALI AKGÜL ◽  
THABET ABDELJAWAD

In this paper, a new set of differential and integral operators has recently been proposed by Abdon et al. by merging the fractional derivative and the fractal derivative, taking into account nonlocality, memory and fractal effects. These operators have demonstrated the complex behavior of many physical, which generally does not predict in ordinary operators or sometimes in fractional operators also. In this paper, we investigate the proposed model by replacing the classic derivative by fractal–fractional derivatives in which fractional derivative is taken in Atangana–Baleanu Caputo sense to study the complex behavior due to nonlocality, memory and fractal effects. Through Schauder’s fixed point theorem, we establish existence theory to ensure that the model posseses at least one solution. Also, Banach fixed theorem guarantees the uniqueness of solution of the proposed model. By means of nonlinear functional analysis, we prove that the proposed model is Ulam–Hyers stable under the new fractal–fractional derivative. We establish the numerical results of the considered model through Lagrangian piece-wise interpolation. For the different values of fractional order and fractal dimension, we study the chaos behavior of the proposed model via simulation at 2D and 3D phase. We show the effect of fractal dimension on integer and fractional order through simulations.


Sign in / Sign up

Export Citation Format

Share Document