Review for "Combining T‐cell‐based immunotherapy with venetoclax elicits synergistic cytotoxicity to B‐cell lines in vitro"

2020 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

2020 ◽  
Vol 38 (5) ◽  
pp. 705-714 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


1987 ◽  
Vol 165 (3) ◽  
pp. 641-649 ◽  
Author(s):  
J Van Snick ◽  
A Vink ◽  
S Cayphas ◽  
C Uyttenhove

We have recently described the purification and NH2-terminal amino acid sequence of a T cell-derived hybridoma growth factor that was provisionally designated interleukin-HP1 (IL-HP1). Here we report that a T cell supernatant containing high titers of this hybridoma growth factor considerably facilitated the establishment of primary cultures of murine plasmacytomas. Most plasmacytoma cell lines derived from such cultures remained permanently dependent on IL-HP1-containing T cell supernatant for both survival and growth in vitro. These cell lines, however, retained their ability to form tumors in irradiated pristane-treated mice. Analytical fractionation of a T cell supernatant rich in IL-HP1 by either gel filtration, isoelectric focusing, or reversed-phase HPLC revealed the existence of only one plasmacytoma growth factor activity that strictly copurified with IL-HP1, strongly suggesting the identity of both factors. This conclusion was further supported by the finding that IL-HP1 purified to homogeneity supported the growth of both B cell hybridomas and plasmacytomas. For half-maximal growth, plasmacytomas, however, required a concentration of IL-HP1 of approximately 30 pM, which is approximately 200 times higher than that required by B cell hybridomas. A clear difference in the specificity of IL-HP1 and B cell stimulatory factor 1 (BSF-1) was demonstrated by the finding that IL-HP1-dependent plasmacytomas did not survive in the presence of BSF-1, whereas helper T cell lines that proliferated in the presence of BSF-1 failed to respond to IL-HP1.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 780-780
Author(s):  
Edward Allan R. Sison ◽  
Daniel Magoon ◽  
Eric Chevalier ◽  
Klaus Dembowsky ◽  
Patrick Brown

Abstract Abstract 780 Background: The interaction between the cell surface receptor CXCR4 and the chemokine SDF-1 (CXCL12) is critical in signaling between leukemic blasts and the bone marrow microenvironment. We previously demonstrated that CXCR4 is an important mediator of chemotherapy resistance, as chemotherapy-induced upregulation of s-CXCR4 in acute myeloid leukemia (AML) cell lines and primary samples led to increased SDF-1-mediated chemotaxis and increased protection by normal human bone marrow stroma from chemotherapy-induced apoptosis. We also showed that stromal protection and chemotherapy resistance could be reversed by treatment with the FDA-approved CXCR4 inhibitor plerixafor, both in vitro in stromal co-cultures of pre-B cell ALL cell lines and in vivo in xenografts of primary samples of infant MLL-rearranged ALL. Therefore, disruption of the CXCR4/SDF-1 axis is a rational means to target extrinsic survival mechanisms in acute leukemia. The novel Protein Epitope Mimetic (PEM) POL5551 is a selective and potent antagonist of CXCR4. Treatment with POL5551 inhibits vascular accumulation of CXCR4+ smooth muscle cells but its effects on ALL have not been reported. We hypothesized that treatment of ALL cell lines with POL5551 would 1) decrease s-CXCR4 expression, 2) inhibit SDF-1-mediated chemotaxis, and 3) reverse stromal-mediated protection from chemotherapy-induced apoptosis. Methods/Results: Pre-B cell ALL (697, HB11;19, NALM-6, SEMK2) and T cell ALL cell lines (CCRF-CEM-1301, Jurkat, Molt-4) were treated with dose ranges of POL5551. Cells were harvested at multiple time points over 72 hours and s-CXCR4 was measured by FACS. S-CXCR4 was potently and markedly reduced in all cell lines, with IC50 levels of <5 nM at 1 hour and IC50 levels of <20 nM at 48 hours. In comparison, 3- to 30-fold higher doses of plerixafor were needed to achieve similar levels of reduction. Simultaneous measurement of cell proliferation using the WST-1 proliferation assay demonstrated that treatment with POL5551 neither increased nor decreased leukemia cell proliferation in a significant manner. To ascertain the functionality of s-CXCR4 inhibition, we performed chemotaxis assays. Leukemia cells were treated with 10 nM POL5551 or vehicle control and placed into hanging cell culture inserts. Migration through a permeable membrane toward an SDF-1 gradient was then measured after 24 hours. Compared to control-treated cells, POL5551-treated cells had significantly decreased SDF-1-induced chemotaxis (average 38% reduction in chemotaxis in pre-B cell lines, p<0.001; average 41% reduction in T cell lines, p=0.05). We also performed co-culture experiments with normal human bone marrow stroma in the presence and absence of POL5551 to further demonstrate the functional effects of s-CXCR4 inhibition. Specifically, we cultured leukemia cells off stroma (O), on stroma (S), or pretreated with POL5551 for 30 minutes prior to plating on stroma (P+S). Cells from each culture condition were then treated with dose ranges of chemotherapy. Following treatment, we measured apoptosis by staining with Annexin V/7-AAD. IC10 through IC90 values were obtained using Calcusyn. To quantify stromal protection, we calculated a Protective Index (PI), defined as the S IC values divided by the O IC values. Thus, PI >1 signified stromal protection, while PI ≤1 signified no stromal protection. To quantify the ability of POL5551 to reverse stromal protection, we calculated a Reversal Index (RI), defined as the P+S IC values divided by the O IC values. Therefore, PI > RI indicated a decrease in stromal protection, while RI ≤1 indicated a reversal of stromal protection. Overall, stroma protected leukemia cells from chemotherapy-induced apoptosis. Importantly, treatment with POL5551 abrogated stromal-mediated protection and restored chemosensitivity (eg, PI 1.182 vs. RI 0.956 for NALM-6 treated with daunorubicin +/− 20 nM POL5551, p<1×10e-9). Conclusions: The novel CXCR4 antagonist POL5551 is a potent inhibitor of CXCR4 in pre-B and T ALL cell lines with activity at nanomolar concentrations in decreasing s-CXCR4 expression, inhibiting SDF-1-induced chemotaxis, and reversing stromal-mediated protection from chemotherapy in vitro. Therefore, if our findings are confirmed in primary samples and in vivo, interruption of leukemia-microenvironment signaling with POL5551 may prove to be an effective strategy in the treatment of pre-B and T cell ALL. Disclosures: Chevalier: Polyphor Ltd: Employment. Dembowsky:Polyphor Ltd: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


2014 ◽  
Vol 150 (1) ◽  
pp. 105
Author(s):  
D. Poradowski ◽  
H. Pruchnik ◽  
A. Pawlak ◽  
R. Ciaputa ◽  
M. Kandefer-Gola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document