Thermodynamic analysis and performance study for adsorption refrigeration cycle driven by a fuel cell electric vehicle waste heat

2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Pei-Zhi Yang
2022 ◽  
pp. 1-33
Author(s):  
Xiuqin Zhang ◽  
Wentao Cheng ◽  
Qiubao Lin ◽  
Longquan Wu ◽  
Junyi Wang ◽  
...  

Abstract Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1cm−2, the integrated system operates in an optimum state, and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.


Author(s):  
Danielle Rodrigues de Moraes ◽  
Laene Oliveira Soares ◽  
Vanessa de Almeida Guimarães ◽  
Katia Ferreira de Oliveira ◽  
Luis Hernández-Callejo ◽  
...  

2021 ◽  
Author(s):  
Ungki Lee ◽  
Sunghyun Jeon ◽  
Ikjin Lee

Abstract Shared autonomous vehicles (SAVs) encompassing autonomous driving technology and car-sharing service are expected to become an essential part of transportation system in the near future. Although many studies related to SAV system design and optimization have been conducted, most of them are focused on shared autonomous battery electric vehicle (SABEV) systems, which employ battery electric vehicles (BEVs) as SAVs. As fuel cell electric vehicles (FCEVs) emerge as alternative fuel vehicles along with BEVs, the need for research on shared autonomous fuel cell electric vehicle (SAFCEV) systems employing FCEVs as SAVs is increasing. Therefore, this study newly presents a design framework of SAFCEV system by developing an SAFCEV design model based on a proton-exchange membrane fuel cell (PEMFC) model. The test bed for SAV system design is Seoul, and optimization is conducted for SABEV and SAFCEV systems to minimize the total cost while satisfying the customer wait time constraint, and the optimization results of both systems are compared. From the results, it is verified that the SAFCEV system is feasible and the total cost of the SAFCEV system is even lower compared to the SABEV system. In addition, several observations on various operating environments of SABEV and SAFCEV systems are obtained from parametric studies.


Author(s):  
C. B. Robledo ◽  
M. J. Poorte ◽  
H. H. M. Mathijssen ◽  
R. A. C. van der Veen ◽  
A. J. M. van Wijk

Sign in / Sign up

Export Citation Format

Share Document