Modulated gravity effects on nonlinear convection in viscoelastic ferromagnetic fluids between two horizontal parallel plates

Heat Transfer ◽  
2021 ◽  
Author(s):  
Gopal Jayalatha ◽  
Nivya Muchikel

2021 ◽  
Vol 66 (1) ◽  
pp. 197-209
Author(s):  
Constantin Fetecau ◽  
Abdul Rauf

Steady motion of two types of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure is analytically studied between infinite horizontal parallel plates when the gravity effects are taken into consideration. Simple and exact expressions are established for the permanent components of starting solutions corresponding to two oscillatory motions induced by the lower plate that oscillates in its plane. Such solutions are very important for the experimentalists who want to eliminate the transients from their experiments. The similar solutions for the simple Couette flow of the same fluids, as well as the permanent solutions corresponding to ordinary incompressible Maxwell fluids performing the same motions, are obtained as limiting cases of general solutions. The convergence of starting solutions to their permanent components as well as the influence of physical parameters on the fluid motion is graphically underlined and discussed.





1979 ◽  
Vol 40 (C7) ◽  
pp. C7-241-C7-242
Author(s):  
A. Boulloud ◽  
J. Charrier ◽  
R. Le Ny
Keyword(s):  




1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.





Sign in / Sign up

Export Citation Format

Share Document