Enriching the value‐at‐risk framework to ensemble empirical mode decomposition with an application to the European carbon market

Author(s):  
Bangzhu Zhu ◽  
Ping Wang ◽  
Julien Chevallier ◽  
Yi‐Ming Wei
2018 ◽  
Vol 281 (1-2) ◽  
pp. 373-395 ◽  
Author(s):  
Bangzhu Zhu ◽  
Shunxin Ye ◽  
Kaijian He ◽  
Julien Chevallier ◽  
Rui Xie

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3471
Author(s):  
Wei Sun ◽  
Junjian Zhang

In response to climate change and environmental issues, many countries have gradually optimized carbon market management and improved the carbon market trading mechanism. Carbon price prediction plays a pivotal role in promoting carbon market management when investors are guided by prediction to conduct rational carbon trading. A novel carbon price prediction methodology is constructed based on ensemble empirical mode decomposition, improved bat algorithm, and extreme learning machine (EEMD-IBA-ELM) in this study. Firstly, the carbon price is decomposed into multiple regular intrinsic mode function (IMF) components by the ensemble empirical mode decomposition, and partial autocorrelation analysis (PACF) is used to find IMF historical data affecting the current value of IMF. Secondly, the improved bat algorithm (IBA) is used to heighten extreme learning machine (ELM) while adaptive parameters are obtained. Finally, EEMD-IBA-ELM was established to predict carbon price. Simultaneously, energy price fluctuation is introduced into the carbon price prediction model. As a consequence, EEMD-IBA-ELM carbon price prediction ability is further improved. In the empirical analysis, the historical carbon price of European Climate Exchange (ECX) and Korea Exchange (KRX) markets are used to examine the effectiveness and stability of the model. Errors of carbon price prediction in ECX and KRX is 2.1982% and 1.1762%, respectively. The results show that the EEMD-IBA-ELM carbon price prediction model can accurately predict carbon price when prediction effect shows strong stability. Furthermore, carbon price prediction accurateness was significantly enhanced by using energy price fluctuation as an influencing factor of carbon price prediction.


CFA Digest ◽  
1999 ◽  
Vol 29 (2) ◽  
pp. 76-78
Author(s):  
Thomas J. Latta

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document