Non-invasive monitoring of the cardiac effects of continuous intravenous oxytocin infusion during cesarean delivery

2017 ◽  
Vol 139 (2) ◽  
pp. 251-252
Author(s):  
Hiroaki Tanaka ◽  
Kayo Tanaka ◽  
Makoto Tsuji ◽  
Shoichi Magawa ◽  
Fumi Hatano ◽  
...  
Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Mark Little ◽  
Peter Pereira ◽  
Jamie Seymour

Carukia barnesi was the first in an expanding list of cubozoan jellyfish whose sting was identified as causing Irukandji syndrome. Nematocysts present on both the bell and tentacles are known to produce localised stings, though their individual roles in Irukandji syndrome have remained speculative. This research examines differences through venom profiling and pulse wave Doppler in a murine model. The latter demonstrates marked measurable differences in cardiac parameters. The venom from tentacles (CBVt) resulted in cardiac decompensation and death in all mice at a mean of 40 min (95% CL: ± 11 min), whereas the venom from the bell (CBVb) did not produce any cardiac dysfunction nor death in mice at 60 min post-exposure. This difference is pronounced, and we propose that bell exposure is unlikely to be causative in severe Irukandji syndrome. To date, all previously published cubozoan venom research utilised parenterally administered venom in their animal models, with many acknowledging their questionable applicability to real-world envenomation. Our model used live cubozoans on anaesthetised mice to simulate normal envenomation mechanics and actual expressed venoms. Consequently, we provide validity to the parenteral methodology used by previous cubozoan venom research.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yunjeong Yang ◽  
Ji Eun Kim ◽  
Hak Jin Song ◽  
Eun Bin Lee ◽  
Yong-Keun Choi ◽  
...  

Abstract Background Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water flow were used as the basis of plant monitoring systems. Results The SWR of a coil probe was used to develop a non-invasive monitoring system to detect water content variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fixed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the effect of illumination on water content, was achieved. Conclusions Our study demonstrated that the SWR of a coil probe could be used as a real-time, non-invasive, non-destructive parameter for detecting water content variation and practical vital activity in live plants. Our non-invasive monitoring method based on SWR may also be applied to various plant studies.


Author(s):  
Dimitrios Mathios ◽  
Siddhartha Srivastava ◽  
Timothy Kim ◽  
Chetan Bettegowda ◽  
Michael Lim

Sign in / Sign up

Export Citation Format

Share Document