Frequency tracking control of the WPT system based on fuzzy RBF neural network

Author(s):  
Yuanyuan Liu ◽  
Fei Liu ◽  
Hongwei Feng ◽  
Guoxin Zhang ◽  
Lu Wang ◽  
...  
2015 ◽  
Vol 799-800 ◽  
pp. 1069-1073
Author(s):  
Hao Tian ◽  
Yue Qing Yu

Trajectory tracking control of compliant parallel robot is presented. According to the characteristics of compliant joint, the system model is derived and the dynamic equation is obtained based on the Lagrange method. Radial Basis Function (RBF) neural network control is designed to globally approximate the model uncertainties. Further, an itemized approximate RBF control method is proposed for higher identify precision. The trajectory tracking abilities of two control strategies are compared through simulation.


Author(s):  
Monisha Pathak ◽  
◽  
Mrinal Buragohain ◽  

In this paper a New RBF Neural Network based Sliding Mode Adaptive Controller (NNNSMAC) for Robot Manipulator trajectory tracking in the presence of uncertainties and disturbances is introduced. The research offers a learning with minimal parameter (LMP) technique for robotic manipulator trajectory tracking. The technique decreases the online adaptive parameters number in the RBF Neural Network to only one, lowering computational costs and boosting real-time performance. The RBFNN analyses the system's hidden non-linearities, and its weight value parameters are updated online using adaptive laws to control the nonlinear system's output to track a specific trajectory. The RBF model is used to create a Lyapunov function-based adaptive control law. The effectiveness of the designed NNNSMAC is demonstrated by simulation results of trajectory tracking control of a 2 dof Robotic Manipulator. The chattering effect has been significantly reduced.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 196
Author(s):  
Yiting Kang ◽  
Biao Xue ◽  
Riya Zeng

Wheeled mobile robots are widely implemented in the field environment where slipping and skidding may often occur. This paper presents a self-adaptive path tracking control framework based on a radial basis function (RBF) neural network to overcome slippage disturbances. Both kinematic and dynamic models of a wheeled robot with skid-steer characteristics are established with position, orientation, and equivalent tracking error definitions. A dual-loop control framework is proposed, and kinematic and dynamic models are integrated in the inner and outer loops, respectively. An RBF neutral network is employed for yaw rate control to realize adaptability to longitudinal slippage. Simulations employing the proposed control framework are performed to track snaking and a DLC reference path with slip ratio variations. The results suggest that the proposed control framework yields much lower position and orientation errors compared with those of a PID and a single neuron network (SNN) controller. It also exhibits prior anti-disturbance performance and adaptability to longitudinal slippage. The proposed control framework could thus be employed for autonomous mobile robots working on complex terrain.


2017 ◽  
Vol 22 (S3) ◽  
pp. 5799-5809 ◽  
Author(s):  
Fei Wang ◽  
Zhi-qiang Chao ◽  
Lian-bing Huang ◽  
Hua-ying Li ◽  
Chuan-qing Zhang

Sign in / Sign up

Export Citation Format

Share Document