Tracking Control of Parallel Robot Manipulators Using RBF Neural Network

Author(s):  
Vu Le Huy ◽  
Nguyen Dinh Dzung
2015 ◽  
Vol 799-800 ◽  
pp. 1069-1073
Author(s):  
Hao Tian ◽  
Yue Qing Yu

Trajectory tracking control of compliant parallel robot is presented. According to the characteristics of compliant joint, the system model is derived and the dynamic equation is obtained based on the Lagrange method. Radial Basis Function (RBF) neural network control is designed to globally approximate the model uncertainties. Further, an itemized approximate RBF control method is proposed for higher identify precision. The trajectory tracking abilities of two control strategies are compared through simulation.


Author(s):  
Yuanyuan Liu ◽  
Fei Liu ◽  
Hongwei Feng ◽  
Guoxin Zhang ◽  
Lu Wang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yuqi Wang ◽  
Qi Lin ◽  
Xiaoguang Wang ◽  
Fangui Zhou

An adaptive PD control scheme is proposed for the support system of a wire-driven parallel robot (WDPR) used in a wind tunnel test. The control scheme combines a PD control and an adaptive control based on a radial basis function (RBF) neural network. The PD control is used to track the trajectory of the end effector of the WDPR. The experimental environment, the external disturbances, and other factors result in uncertainties of some parameters for the WDPR; therefore, the RBF neural network control method is used to approximate the parameters. An adaptive control algorithm is developed to reduce the approximation error and improve the robustness and control precision of the WDPR. It is demonstrated that the closed-loop system is stable based on the Lyapunov stability theory. The simulation results show that the proposed control scheme results in a good performance of the WDPR. The experimental results of the prototype experiments show that the WDPR operates on the desired trajectory; the proposed control method is correct and effective, and the experimental error is small and meets the requirements.


Sign in / Sign up

Export Citation Format

Share Document