WATER PARTICLE KINEMATICS QUANTUM APPROACH: A CHALLENGE FOR SPRINKLER IRRIGATION SYSTEMS

2013 ◽  
Vol 62 (2) ◽  
pp. 156-160 ◽  
Author(s):  
D. De Wrachien ◽  
G. Lorenzini ◽  
S. Mambretti
2018 ◽  
Vol 31 (2) ◽  
pp. 370-378
Author(s):  
JÚLIO JUSTINO DE ARAÚJO ◽  
VANDER MENDONÇA ◽  
MARIA FRANCISCA SOARES PEREIRA ◽  
MATHEUS DE FREITAS SOUZA

ABSTRACT The banana tree is grown in an extensive tropical region throughout the world, usually by small producers. The present work had the objective of evaluating irrigation systems in banana production in the Açu-RN Valley, aiming at alternatives so that they can be recommended to farmers in the Açu Valley region. The experiment was carried out in the area of the School Farm of the IFRN Campus Ipanguaçu, located in the municipality of Ipanguaçu-RN. The experiment was carried out in a randomized complete block design with subdivided plots and eight replications. The irrigation systems were: irrigation, drip irrigation, micro sprinkler and alternative irrigation. The plots were composed of eight useful plants with spacing in double rows 4 x 2 x 2 m. Eight characteristics related to production were evaluated: bunch mass (MC); number of leaves (NP); number of fruits per cluster (NFC); mean mass of the leaves (MMP); diameter of the fruit of the second seed (DF2P); length of the fruit of the second seed (CF2P); mean fruit mass (MMF); productivity (Prod). The data were submitted to analysis of variance and the means were compared by the Tukey test at 5% of probability. In the first cycle of production the sprinkler irrigation system was the one that presented better results the productivity of the Pacovan banana tree; in the 3rd cycle the alternative irrigation system was the one that showed better results the productivity of the banana tree; where the electrical conductivity correlated with the sodium adsorption ratio in the irrigation water, contributed to a moderate limitation of use.


jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 196-201 ◽  
Author(s):  
R. W. Elmore ◽  
D. E. Eisenhauer ◽  
J. E. Specht ◽  
J. H. Williams

1974 ◽  
Vol 17 (6) ◽  
pp. 1020-1024
Author(s):  
G. J. Hermann ◽  
G. M. McMaster ◽  
D. W. Fitzsimmons

2018 ◽  
Vol 38 (2) ◽  
pp. 188-196
Author(s):  
Jorge T. Tamagi ◽  
Miguel A. Uribe-Opazo ◽  
Marcio A. Vilas Boas ◽  
Jerry A. Johann ◽  
Luciana P. C. Guedes

1986 ◽  
Vol 18 (9) ◽  
pp. 185-195 ◽  
Author(s):  
A. Adin

Methods of irrigation are reviewed, including surface irrigation, sprinkler irrigation and drip irrigation, and the problems of these systems with regard to the quality of the water used are described. Surface irrigation does not suffer much from water quality problems, but both sprinkler irrigation and drip irrigation systems are more affected, the main problem being clogging of pumps, pipes and orifices. Clogging is usually due to a combination of suspended matter, chemical precipitation and biological growth. Current solutions through water treatment, and associated problems with this, are described, with examples given of typical strainers and filters. The key to the solution of clogging problems is a proper match between water quality of the source and within the distribution system, and the type ot treatment to be used, therefore, proper water quality monitoring is recommended. Direct granular filtration is the most preferaDle treatment process for drip irrigation systems.


1976 ◽  
Vol 19 (6) ◽  
pp. 1041-1044 ◽  
Author(s):  
G. M. McMaster ◽  
D. R. Douglas

Sign in / Sign up

Export Citation Format

Share Document