Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy

2016 ◽  
Vol 10 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Jong Jin Lee ◽  
Youngmin Moon ◽  
Jung Hyun Han ◽  
Sungho Jeong
2021 ◽  
Author(s):  
Olivier Forni ◽  
Ryan B Anderson ◽  
Agnès Cousin ◽  
Samuel M Clegg ◽  
Jens Frydenvang ◽  
...  

<p>The Mars 2020 Mission was designed  to address four overarching goals [1]: i) investigate the mineralogy and geology of the Jezero crater as representative of the ancient Martian environment, ii) assess the habitability of this ancient environment, iii) identify and cache samples with a high potential of preserving biosignatures, iv) study the current environmental Martian conditions in preparation for human exploration.The SuperCam Instrumental Suite was designed as the primary tool to remotely investigate elemental composition and mineralogy of rock and soil targets. It will also provide sub-mm context color imaging of outcrop textures, search for organics and volatiles, perform atmospheric characterization, and record sounds [2], [3]. To achieve these objectives, SuperCam implements four nested and co-aligned spectroscopic techniques: laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, time-resolved fluorescence spectroscopy, and passive VISIR spectroscopy. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The Supercam LIBS instrument comprises three spectrometers covering the UV (245 – 340 nm), the violet (385 – 465 nm), and the visible and near-infrared (VNIR, 536 – 853 nm) ranges encompassing spectral lines of the majority of the elements of interest.  Using a dedicated LIBS database, it is possible to retrieve the composition of the ablated targets. For ChemCam, the first planetary LIBS device on board the Curiosity rover on Mars, this was achieved using multivariate techniques [4] for the major elements and univariate techniques for some minors and traces [5].  A similar procedure has been applied on SuperCam: LIBS measurements of a suite of more than 300 samples covering a wide range of compositions for the major elements has been acquired at a distance of 3m with a representative model of the instrument. The database includes a set of the calibration targets (SCCT) similar to those that are mounted on the Perseverance rover. Measurements of the SCCT were also acquired a 1.5m and 4.2m. Some SCCTs were also analysed using the Flight Model during System Thermal Test (STT). Several steps in the quantification procedure are achieved. i) Identification and removal of outliers ii) Definition of representative five-fold cross-validation for model evaluation. iii) definition of the train set and test set.  iv) training of various multivariate regression methods among them Partial Least Squares (PLS), linear methods (Lasso, Elastic Net, Blended Lasso [6]) or ensemble methods (Random Forest, Gradient Boosting) v) prediction of the test set and SCCT at various distances and on the STT targets. The performances of the methods are evaluated using statistical for both the Cross Validation and Prediction) vi) Selection of the best model for a given element. A specialized pipeline is designed to produce the quantified results at tactical timescales.</p><p>[1] Farley et al. (2020), Space Sci. Rev. 216, 142.  [2] Wiens et al. (2020) Space Sci. Rev. 216, in press [3] Maurice et al. (2020) Space Sci. Rev. 216, in press [4] Clegg et al. (2017), SCAB, 129, 64. [5] Payré et al. (2017) JGR, 122, 650. [6] Anderson et al. (2017), SCAB, 129, 49.</p>


2020 ◽  
Vol 10 (19) ◽  
pp. 6848
Author(s):  
Altaf Ahmad ◽  
Muhammad Hafeez ◽  
Shahab Ahmed Abbasi ◽  
Taj Muhammad Khan ◽  
Mohammad Rashed Iqbal Faruque ◽  
...  

This article presents elemental analysis of an economically important mineral (chalcopyrite) of local origin. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) methodology based on the assumption of optically thin plasma and local thermodynamic equilibrium was employed for quantitative analysis. Plasma on the surface of the chalcopyrite target was generated by an Nd:YAG laser beam of wavelength 532 nm, pulse width 5 ns, and operated at repetition rate of 10 Hz. A LIBS2000+ detection system, comprised of five spectrometers, covering the spectral range from 200–720 nm, was used to record the signal of the optical emission from the chalcopyrite plasma. Recorded optical spectrum revealed the presence of Cu and Fe as the major elements while Ca and Na were recognized as the minor elements in the target sample. Quantitative analysis has shown that the relative concentrations of Cu, Fe, and Ca in the sample under study were 58.9%, 40.2%, and 0.9% by weight respectively. However, Na was not quantified due to the unavailability of suitable spectral lines, required for CF-LIBS analysis. Results obtained by CF-LIBS were validated by X-ray fluorescence (XRF) analysis, which showed the presence of five compositional elements viz. Cu, Fe, Si, Se and Ag with weight percentages of 58.1%, 35.4%, 5.7%, 0.7%, and 0.1% respectively. These results endorse the effectiveness of the CF-LIBS technique for quantitative analysis of major elements, however, its usefulness in case of minor and trace elements needs further improvement.


2020 ◽  
Vol 92 (2) ◽  
pp. 20701
Author(s):  
Bo Li ◽  
Xiaofeng Li ◽  
Zhifeng Zhu ◽  
Qiang Gao

Laser-induced breakdown spectroscopy (LIBS) is a powerful technique for quantitative diagnostics of gases. The spatial resolution of LIBS, however, is limited by the volume of plasma. Here femtosecond-nanosecond dual-pulsed LIBS was demonstrated. Using this method, the breakdown threshold was reduced by 80%, and decay of continuous radiation was shortened. In addition, the volume of the plasma was shrunk by 85% and hence, the spatial resolution of LIBS was significantly improved.


Sign in / Sign up

Export Citation Format

Share Document