scholarly journals Compositional Analysis of Chalcopyrite Using Calibration-Free Laser-Induced Breakdown Spectroscopy

2020 ◽  
Vol 10 (19) ◽  
pp. 6848
Author(s):  
Altaf Ahmad ◽  
Muhammad Hafeez ◽  
Shahab Ahmed Abbasi ◽  
Taj Muhammad Khan ◽  
Mohammad Rashed Iqbal Faruque ◽  
...  

This article presents elemental analysis of an economically important mineral (chalcopyrite) of local origin. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) methodology based on the assumption of optically thin plasma and local thermodynamic equilibrium was employed for quantitative analysis. Plasma on the surface of the chalcopyrite target was generated by an Nd:YAG laser beam of wavelength 532 nm, pulse width 5 ns, and operated at repetition rate of 10 Hz. A LIBS2000+ detection system, comprised of five spectrometers, covering the spectral range from 200–720 nm, was used to record the signal of the optical emission from the chalcopyrite plasma. Recorded optical spectrum revealed the presence of Cu and Fe as the major elements while Ca and Na were recognized as the minor elements in the target sample. Quantitative analysis has shown that the relative concentrations of Cu, Fe, and Ca in the sample under study were 58.9%, 40.2%, and 0.9% by weight respectively. However, Na was not quantified due to the unavailability of suitable spectral lines, required for CF-LIBS analysis. Results obtained by CF-LIBS were validated by X-ray fluorescence (XRF) analysis, which showed the presence of five compositional elements viz. Cu, Fe, Si, Se and Ag with weight percentages of 58.1%, 35.4%, 5.7%, 0.7%, and 0.1% respectively. These results endorse the effectiveness of the CF-LIBS technique for quantitative analysis of major elements, however, its usefulness in case of minor and trace elements needs further improvement.

2018 ◽  
Vol 3 (8) ◽  
pp. 50 ◽  
Author(s):  
Tagreed K. Hamad ◽  
Hussein Thamer Salloom

In this study, Calibration-free Laser-induced breakdown spectroscopy (CF-LIBS) was applied to quantitatively analyze the elemental composition of Ti-6Al-4V titanium based alloy samples with no need for matrix-matched calibration procedure. Nd:YAG pulsed laser operating at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral lines to determine characteristic wavelengths, energy levels and other spectroscopic parameters. The values of plasma temperature obtained using Boltzmann plot for four examined samples ranged from 7439 to 6826 K while the electron density for each element was determined using Boltzmann-Saha equation. The concentration of Ti, Al, V and Fe has been determined and were within the samples nominal concentrations obtained from XRF analysis.  The calculated average relative errors of Ti, Al, V and Fe were 0.39%, 4.38%, 4.94 % and 8.2 %, respectively. Finally, there was a direct proportionality relation between the ratio of ionic to neutral emission lines of Ti for four samples and the surface hardness values measured mechanically using Vickers hardness test. The ratio at   had the best linear regression value (R2=0.95) which indicates the best correlation with surface hardness.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Hussein Salloom ◽  
Tagreed Hamad

In this work, laser-induced breakdown spectroscopy (LIBS) analysis is optimized for direct estimation of elemental composition, thermal conductivity and hardness for Ni-Cr-Nb alloys. These alloys were chosen with a variable elemental content of niobium and chromium. The influence of laser energy and shot numbers on measuring line intensity was investigated. Based on the ratio between two spectral lines, calibration curves were formed to estimate the element concentration and LIBS results were confirmed with related energy-dispersive X-ray spectroscopy (EDS) data. Hardness and thermal conductivity estimation using LIBS were done by measuring the ratio between two spectral lines, plasma excitation temperature and electron density for different samples. Semi-empirical formulas correlated hardness and thermal conductivity with plasma temperature were established.


Sign in / Sign up

Export Citation Format

Share Document