A Noncovalent Binding Strategy to Capture Noble Gases, Hydrogen and Nitrogen

2018 ◽  
Vol 39 (15) ◽  
pp. 901-908 ◽  
Author(s):  
Cherumuttathu H. Suresh ◽  
Neetha Mohan ◽  
Therese Davis Della
1979 ◽  
Vol 40 (6) ◽  
pp. 533-540 ◽  
Author(s):  
G. Grynberg ◽  
E. Giacobino ◽  
F. Biraben ◽  
K. Beroff
Keyword(s):  

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

1983 ◽  
Vol 44 (C7) ◽  
pp. C7-497-C7-504 ◽  
Author(s):  
T. Nakajima ◽  
N. Uchitomi ◽  
Y. Adachi ◽  
S. Maeda ◽  
C. Hirose
Keyword(s):  

INEOS OPEN ◽  
2020 ◽  
Author(s):  
N. A. Samoilova ◽  

The enzyme-containing magnetic composites are presented. The magnetic matrix for enzyme immobilization is obtained by sequential application of an amine-containing polysaccharide—chitosan and a synthetic polymer—poly(ethylene-alt-maleic acid) to the magnetite microparticles to form the interpolyelectrolyte complex shell. Then, the enzyme (trypsin) is immobilized by covalent or noncovalent binding. Thus, the suggested composites can be readily obtained in the environmentally friendly manner. The enzyme capacity of the resulting composites reaches 28.0–32.6 mg/g. The maximum hydrolysis rates of the H-Val-Leu-Lys-pNA substrate provided by these composites range within 0.60·10–7–0.77·10–7 M/min.


2015 ◽  
Vol 49 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Daxiang He ◽  
Jianfa Chen ◽  
Chen Zhang ◽  
Wei Li ◽  
Jianxun Zhou
Keyword(s):  

2016 ◽  
Vol 50 (4) ◽  
pp. 315-325
Author(s):  
Keisuke Nagao ◽  
Makiko K. Haba ◽  
Jong Ik Lee ◽  
Taehoon Kim ◽  
Mi Jung Lee ◽  
...  

2016 ◽  
Author(s):  
Andrew J. Smye ◽  
◽  
Colin R.M. Jackson ◽  
Matthias Konrad-Schmolke ◽  
Stephen Parman ◽  
...  

2020 ◽  
Author(s):  
Marie Haut-Labourdette ◽  
◽  
Daniele Pinti ◽  
André Poirier ◽  
Marion Saby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document