Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola

Author(s):  
Marwa Eltarahony ◽  
Ayman Kamal ◽  
Sahar Zaki ◽  
Desouky Abd‐El‐Haleem
2021 ◽  
Author(s):  
Marwa Eltarahony ◽  
Ayman Kamal ◽  
sahar zaki ◽  
Desouky Abdelhaleem

Abstract This study employed the ureolytic fungal Metschnikowia pulcherrima (29A) and bacterial Raoultella planticola (VIP) strains in Pb 2+ and Hg 2+ removal using the promising CaCO 3 bio precipitation technique. Out of fifty isolates, strains 29A and VIP were selected based on their highest ureolytic activity followed by MIC assay using 350 ppm of Pb 2+ and Hg 2+ . The maximum urease activity recorded 884 and 639 U/mL for 29A and VIP strains at 24 and 30h of incubation, respectively. Complete removal of Pb 2+ was achieved at 42h and 90h for 29A, VIP correspondingly, while Hg 2+ was totally removed at 60h and 102h for 29A, VIP respectively. Remarkable removal of Ca 2+ (>95%) was achieved by the end of the experiments, which would address the hardness problem in the water treatment process. Further, EDX, SEM and, XRD were used to characterize the remediated precipitates. EDX profiles showed characteristic peaks of C, O and, Ca 2+ besides Pb 2+ and Hg 2+ . SEM illustrated the presence of microbial imprints and calcinated cells in the remediated bioliths. However, XRD confirmed the transformation of soluble metals to insoluble forms entrapped in calcite or vaterite lattice. Such a bioremediation approach ensures the detoxification and sequestration of heavy metals in a stable and durable matrix; obstructing their leach from carbonate complex trap to the environment.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  

2011 ◽  
Author(s):  
Parker Woody ◽  
Michael Zhang ◽  
Craig Pulsipher ◽  
Dawson Hedges ◽  
Bruce Brown

1904 ◽  
Vol 58 (1487supp) ◽  
pp. 23830-23831
Author(s):  
C. E. Stromeyer ◽  
W. B. Baron
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document