Carotid body chemoreceptors in dissociated cell culture

2002 ◽  
Vol 59 (3) ◽  
pp. 249-255 ◽  
Author(s):  
C.A. Nurse ◽  
I.M. Fearon
1993 ◽  
Vol 264 (1) ◽  
pp. R41-R50 ◽  
Author(s):  
A. Vardhan ◽  
A. Kachroo ◽  
H. N. Sapru

Stimulation of carotid body chemoreceptors by saline saturated with 100% CO2 elicited an increase in mean arterial pressure, respiratory rate, tidal volume, and minute ventilation (VE). Microinjections of L-glutamate into a midline area 0.5-0.75 mm caudal and 0.3-0.5 mm deep with respect to the calamus scriptorius increased VE. Histological examination showed that the site was located in the commissural nucleus of the nucleus tractus solitarii (NTS). The presence of excitatory amino acid receptors [N-methyl-D-aspartic acid (NMDA); kainate, quisqualate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and trans 1-amino-cyclopentane-trans-1,3-dicarboxylic acid (ACPD)] in this area was demonstrated by microinjections of appropriate agonists. Simultaneous blockade of NMDA and non-NMDA receptors by combined injections of DL-2-aminophosphonoheptanoate (AP-7; 1 nmol) and 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 1 nmol) abolished the responses to stimulation of carotid body on either side. Combined injections of AP-7 and DNQX did not produce a nonspecific depression of neurons because the responses to another agonist, carbachol, remained unaltered. Inhibition of the neurons in the aforementioned area with microinjections of muscimol (which hyperpolarizes neuronal cell bodies but not fibers of passage) also abolished the responses to subsequent carotid body stimulation on either side.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (2) ◽  
pp. H770-H773 ◽  
Author(s):  
W. Zhang ◽  
S. W. Mifflin

The nucleus tractus solitarius (NTS) is the primary site of termination of arterial baroreceptor and chemoreceptor afferent fibers. Excitatory amino acid (EAA) receptors within NTS have been shown to play an important role in the mediation of arterial baroreceptor reflexes; however, the importance of EAA receptors within NTS in the mediation of arterial chemoreceptor reflexes remains controversial. Therefore, in chloralose-urethan-anesthetized, mechanically ventilated, paralyzed rats, 4 nmol of the broad-spectrum EAA receptor antagonist kynurenic acid (Kyn) was injected into the NTS to observe the effects of EAA receptor blockade on the pressor responses evoked by either activation of ipsilateral carotid body chemoreceptors (by close arterial injection of CO2-saturated bicarbonate) or electrical stimulation of ipsilateral carotid sinus nerve (CSN). Under control conditions, activation of carotid body chemoreceptors and CSN stimulation evoked increases in arterial pressure of 27 +/- 2 (n = 24 sites) and 28 +/- 3% (n = 8), respectively. Kyn microinjection into NTS significantly reduced the pressor responses evoked by activation of carotid body chemoreceptors and electrical stimulation of the CSN for 20 and 25 min, respectively. Attenuation of pressor responses evoked by chemoreceptor activation were maximal at 20 min post-Kyn injection (13 +/- 2%), whereas CSN-evoked pressor responses were maximally attenuated at 15 min (6 +/- 4%). Microinjection into NTS of 4 nmol of xanthurenic acid, a structural analogue of Kyn with no EAA receptor antagonist properties, had no effect on chemoreceptor reflexes. We conclude that EAA receptors within NTS play an important role in the mediation of arterial chemoreceptor reflexes.


2011 ◽  
Vol 163 (1-2) ◽  
pp. 128
Author(s):  
G.R. Pedrino ◽  
M.V. Rossi ◽  
G.H.M. Schoorlemmer ◽  
O.U. Lopes ◽  
S.L.D. Cravo

1989 ◽  
Vol 78 (3) ◽  
pp. 317-324 ◽  
Author(s):  
F. Rihs ◽  
J. Kesselring ◽  
C. Meier

Author(s):  
Rodrigo Iturriaga ◽  
Julio Alcayaga ◽  
Mark W. Chapleau ◽  
Virend K Somers

The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2, and pH, eliciting reflex ventilatory, cardiovascular and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiologic responses, and its role in maintaining health and potentiating disease. Emphasis will be placed on: i) Transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ionic channels; ii) Synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; iii) Integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and iv) The contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension and metabolic diseases, and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document