Studies on sex differentiation and sex determination in amphibians. IV. The geographical distribution of the sex races of the European grass frog (Rana temporaria, L.). A contribution to the problem of the evolution of sex

1930 ◽  
Vol 56 (2) ◽  
pp. 149-165 ◽  
Author(s):  
Emil Witschi
2013 ◽  
Vol 26 (7) ◽  
pp. 1569-1577 ◽  
Author(s):  
N. Rodrigues ◽  
C. Betto-Colliard ◽  
H. Jourdan-Pineau ◽  
N. Perrin

2014 ◽  
Vol 10 (12) ◽  
pp. 20140809 ◽  
Author(s):  
Daniel E. Janes ◽  
Christopher L. Organ ◽  
Rami Stiglec ◽  
Denis O'Meally ◽  
Stephen D. Sarre ◽  
...  

In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2011 ◽  
Vol 4 (2) ◽  
pp. 192-194
Author(s):  
Georgy A. Lada ◽  
V. Y. Nedosekin

A small isolated population of tesselated snake, Natrix tesselata was found in the Upper Don (Lipetsk Region, Russia). It is the first record of this species in the Central Chernozem Territory of Russia, which is separated from the northern border of the main range by the distance of about 200 km. An isolated population of common frog, Rana temporaria and phenetically peculiar population of fire-bellied toad, Bombina bombina are found here too. Faunistic aspect of new herpetological records is discussed.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 587-595 ◽  
Author(s):  
Mario de Bono ◽  
Jonathan Hodgkin

Abstract The tra-1 gene is a terminal regulator of somatic sex in Caenorhabditis elegans: high tra-1 activity elicits female development, low tra-1 activity elicits male development. To investigate the function and evolution of tra-1, we examined the tra-1 gene from the closely related nematode C. briggsae. Ce-tra-1 and Cb-tra-1 are unusually divergent. Each gene generates two transcripts, but only one of these is present in both species. This common transcript encodes TRA-1A, which shows only 44% amino acid identity between the species, a figure much lower than that for previously compared genes. A Cb-tra-1 transgene rescues many tissues of tra-1(nul1) mutants of C. elegans but not the somatic gonad or germ line. This transgene also causes nongonadal feminization of XO animals, indicating incorrect sexual regulation. Alignment of Ce-TRA-1A and Cb-TRA-1A defines several conserved regions likely to be important for tra-1 function. The phenotypic differences between Ce-tra-1(null) mutants rescued by Cb-tra-1 transgenes and wild-type C. elegans indicate significant divergence of regulatory regions. These molecular and functional studies suggest that evolution of sex determination in nematodes is rapid and genetically complex.


Sign in / Sign up

Export Citation Format

Share Document