genotypic sex determination
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duminda S. B. Dissanayake ◽  
Clare E. Holleley ◽  
Arthur Georges

AbstractAltered climate regimes have the capacity to affect the physiology, development, ecology and behaviour of organisms dramatically, with consequential changes in individual fitness and so the ability of populations to persist under climatic change. More directly, extreme temperatures can directly skew the population sex ratio in some species, with substantial demographic consequences that influence the rate of population decline and recovery rates. In contrast, this is particularly true for species whose sex is determined entirely by temperature (TSD). The recent discovery of sex reversal in species with genotypic sex determination (GSD) due to extreme environmental temperatures in the wild broadens the range of species vulnerable to changing environmental temperatures through an influence on primary sex ratio. Here we document the levels of sex reversal in nests of the Australian alpine three-lined skink (Bassiana duperreyi), a species with sex chromosomes and sex reversal at temperatures below 20 °C and variation in rates of sex reversal with elevation. The frequency of sex reversal in nests of B. duperreyi ranged from 28.6% at the highest, coolest locations to zero at the lowest, warmest locations. Sex reversal in this alpine skink makes it a sensitive indicator of climate change, both in terms of changes in average temperatures and in terms of climatic variability.


2021 ◽  
Author(s):  
Sarah K Buddenborg ◽  
Alan Tracey ◽  
Duncan J Berger ◽  
Zhigang Lu ◽  
Stephen Doyle ◽  
...  

Background: Schistosoma mansoni is a flatworm that causes a neglected tropical disease affecting millions worldwide. Most flatworms are hermaphrodites but schistosomes have genotypically determined male (ZZ) and female (ZW) sexes. Sex is essential for pathology and transmission, however, the molecular determinants of sex remain unknown and is limited by poorly resolved sex chromosomes in previous genome assemblies. Results: We assembled the 391.4 Mb S. mansoni genome into individual, single-scaffold chromosomes, including Z and W. Manual curation resulted in a vastly improved gene annotation, resolved gene and repeat arrays, trans-splicing, and almost all UTRs. The sex chromosomes each comprise pseudoautosomal regions and single sex-specific regions. The Z-specific region contains 932 genes, but on W all but 29 of these genes have been lost and the presence of five pseudogenes indicates that degeneration of W is ongoing. Synteny analysis reveals an ancient chromosomal fusion corresponding to the oldest part of Z, where only a single gene-encoding the large subunit of pre-mRNA splicing factor U2AF has retained an intact copy on W. The sex-specific copies of U2AF have divergent N-termini and show sex-biased gene expression. Conclusion: Our assembly with fully resolved chromosomes provides evidence of an evolutionary path taken to create the Z and W sex chromosomes of schistosomes. Sex-linked divergence of the single U2AF gene, which has been present in the sex-specific regions longer than any other extant gene with distinct male and female specific copies and expression, may have been a pivotal step in the evolution of gonorchorism and genotypic sex determination of schistosomes.


2021 ◽  
pp. 1-16
Author(s):  
Lisa E. Schwanz ◽  
Arthur Georges

In this review, we consider the insight that has been gained through theoretical examination of environmental sex determination (ESD) and thermolability – how theory has progressed our understanding of the ecological and evolutionary dynamics associated with ESD, the transitional pathways between different modes of sex determination, and the underlying mechanisms. Following decades of theory on the adaptive benefits of ESD, several hypotheses seem promising. These hypotheses focus on the importance of <i>differential fitness</i> (sex-specific effects of temperature on fitness) in generating selection for ESD, but highlight alternative ways differential fitness arises: seasonal impacts on growth, sex-specific ages of maturation, and sex-biased dispersal. ESD has the potential to generate biased sex ratios quite easily, leading to complex feedbacks between the ecology and evolution of ESD. Frequency-dependent selection on sex acts on ESD-related traits, driving local adaptation or plasticity to restore equilibrium sex ratio. However, migration and overlapping generations (“mixing”) diminish local adaptation and leave each cohort/population with the potential for biased sex ratios. Incorporating mechanism into ecology and evolution models reveals similarities between different sex-determining systems. Dosage and gene regulatory network models of sexual development are beginning to shed light on how temperature sensitivity and thresholds may arise. The unavoidable temperature sensitivity in sex-determining systems inherent to these models suggests that evolutionary transitions between genotypic sex determination (GSD) and temperature-dependent sex determination, and between different forms of GSD, are simple and elegant. Theoretical models are often best-served by considering a single piece of a puzzle; however, there is much to gain from reflecting on all of the pieces together in one integrative picture.


2021 ◽  
Vol 8 (6) ◽  
pp. 202292
Author(s):  
Luca Cornetti ◽  
Dieter Ebert

Mechanisms of sex determination (SD) differ widely across the tree of life. In genotypic sex determination (GSD), genetic elements determine whether individuals are male or female, while in environmental sex determination (ESD), external cues control the sex of the offspring. In cyclical parthenogens, females produce mostly asexual daughters, but environmental stimuli such as crowding, temperature or photoperiod may cause them to produce sons. In aphids, sons are induced by ESD, even though GSD is present, with females carrying two X chromosomes and males only one (X0 SD system). By contrast, although ESD exists in Daphnia , the two sexes were suggested to be genetically identical, based on a 1972 study on Daphnia magna (2n=20) that used three allozyme markers. This study cannot, however, rule out an X0 system, as all three markers may be located on autosomes. Motivated by the life cycle similarities of Daphnia and aphids, and the absence of karyotype information for Daphnia males, we tested for GSD (homomorphic sex chromosomes and X0) systems in D. magna using a whole-genome approach by comparing males and females of three genotypes. Our results confirm the absence of haploid chromosomes or haploid genomic regions in D. magna males as well as the absence of sex-linked genomic regions and sex-specific single-nucleotide polymorphisms. Within the limitations of the three studied populations here and the methods used, we suggest that our results make the possibility of genetic differences among sexes in the widely used Daphnia model system very unlikely.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Zhao ◽  
Zhi Li ◽  
Miao Ding ◽  
Tao Wang ◽  
Ming-Tao Wang ◽  
...  

Unisexual lineages are commonly considered to be short-lived in the evolutionary process as accumulation of deleterious mutations stated by Muller’s ratchet. However, the gynogenetic hexaploid gibel carp (Carassius gibelio) with existence over 0.5 million years has wider ecological distribution and higher genetic diversity than its sexual progenitors, which provides an ideal model to investigate the underlying mechanisms on countering Muller’s ratchet in unisexual taxa. Unlike other unisexual lineages, the wild populations of gibel carp contain rare and variable proportions of males (1–26%), which are determined via two strategies including genotypic sex determination and temperature-dependent sex determination. Here, we used a maternal gibel carp from strain F to be mated with a genotypic male from strain A+, a temperature-dependent male from strain A+, and a male from another species common carp (Cyprinus carpio), respectively. When the maternal individual was mated with the genotypic male, a variant of gynogenesis was initiated, along with male occurrence, accumulation of microchromosomes, and creation of genetic diversity in the offspring. When the maternal individual was mated with the temperature-dependent male and common carp, typical gynogenesis was initiated that all the offspring showed the same genetic information as the maternal individual. Subsequently, we found out that the genotypic male nucleus swelled and contacted with the female nucleus after fertilization although it was extruded from the female nucleus eventually, which might be associated with the genetic variation in the offspring. These results reveal that genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp, which provides insights into the evolution of unisexual reproduction.


2021 ◽  
pp. 1-10
Author(s):  
Jan Ehl ◽  
Marie Altmanová ◽  
Lukáš Kratochvíl

Transitions from environmental sex determination (ESD) to genotypic sex determination (GSD) require an intermediate step of sex reversal, i.e., the production of individuals with a mismatch between the ancestral genotypic and the phenotypic sex. Among amniotes, the sole well-documented transition in this direction was shown in the laboratory in the central bearded dragon, Pogona vitticeps, where very high incubation temperatures led to the production of females with the male-typical (ZZ) genotype. These sex-reversed females then produced offspring whose sex depended on the incubation temperature. Sex-reversed animals identified by molecular and cytogenetic markers were also reported in the field, and their increasing incidence was speculated as a climate warming-driven transition in sex determination. We show that the molecular and cytogenetic markers normally sex-linked in P. vitticeps are also sex-linked in P. henrylawsoni and P. minor, which points to quite ancient sex chromosomes in this lineage. Nevertheless, we demonstrate, based on a crossing experiment with a male bearded dragon who possesses a mismatch between phenotypic sex and genotype, that the used cytogenetic and molecular markers might not be reliable for the identification of sex reversal. Sex reversal should not be considered as the only mechanism causing a mismatch between genetic sex-linked markers and phenotypic sex, which can emerge also by other processes, here most likely by a rare recombination between regions of sex chromosomes which are normally sex-linked. We warn that sex-linked, even apparently for a long evolutionary time, and sex-specific molecular and cytogenetic markers are not a reliable tool for the identification of sex-reversed individuals in a population and that sex reversal has to be verified by other approaches, particularly by observation of the sex ratio of the progeny.


2021 ◽  
pp. 1-6
Author(s):  
Alexander Kostmann ◽  
Lukáš Kratochvíl ◽  
Michail Rovatsos

Squamate reptiles show high diversity in sex determination ranging from environmental sex determination to genotypic sex determination with varying degrees of differentiation of sex chromosomes. Unfortunately, we lack even basic information on sex determination mode in several lineages of squamates, which prevents full understanding of their diversity and evolution of sex determination. One of the reptilian lineages with missing information on sex determination is the family Gerrhosauridae, commonly known as the plated lizards. Several species of gerrhosaurids have been studied in the past by conventional cytogenetic methods, but sex-specific differences were not identified. In this study, we applied both conventional and molecular cytogenetic methods to metaphases from both sexes of the Peters’ keeled plated lizard (Tracheloptychus petersi). We identified accumulations of rDNA loci in a pair of microchromosomes in metaphases from males, but only in a single microchromosome in females. The restriction of the observed heterozygosity to females suggests a putative ZZ/ZW system of sex chromosomes, which represents the first report of sex chromosomes in a gerrhosaurid lizard. The lack of sex-specific signals in all other cytogenetic methods implies that the sex chromosomes of T. petersi are poorly differentiated in sequence content.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 156
Author(s):  
Lorenzo Clemente ◽  
Sofia Mazzoleni ◽  
Eleonora Pensabene ◽  
Tomáš Protiva ◽  
Philipp Wagner ◽  
...  

The Asian box turtle genus Cuora currently comprises 13 species with a wide distribution in Southeast Asia, including China and the islands of Indonesia and Philippines. The populations of these species are rapidly declining due to human pressure, including pollution, habitat loss, and harvesting for food consumption. Notably, the IUCN Red List identifies almost all species of the genus Cuora as Endangered (EN) or Critically Endangered (CR). In this study, we explore the karyotypes of 10 Cuora species with conventional (Giemsa staining, C-banding, karyogram reconstruction) and molecular cytogenetic methods (in situ hybridization with probes for rDNA loci and telomeric repeats). Our study reveals a diploid chromosome number of 2n = 52 chromosomes in all studied species, with karyotypes of similar chromosomal morphology. In all examined species, rDNA loci are detected at a single medium-sized chromosome pair and the telomeric repeats are restricted to the expected terminal position across all chromosomes. In contrast to a previous report, sex chromosomes are neither detected in Cuoragalbinifrons nor in any other species. Therefore, we assume that these turtles have either environmental sex determination or genotypic sex determination with poorly differentiated sex chromosomes. The conservation of genome organization could explain the numerous observed cases of interspecific hybridization both within the genus Cuora and across geoemydid turtles.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 342
Author(s):  
Eleonora Pensabene ◽  
Lukáš Kratochvíl ◽  
Michail Rovatsos

Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucatán banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across eleven eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently.


Author(s):  
Eleonora Pensabene ◽  
Lukáš Kratochvíl ◽  
Michail Rovatsos

Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucat&aacute;n banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across 11 eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently.


Sign in / Sign up

Export Citation Format

Share Document