Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site

2005 ◽  
Vol 7 (8) ◽  
pp. 1053-1062 ◽  
Author(s):  
Jan E. Carette ◽  
Harm C. A. Graat ◽  
Frederik H. E. Schagen ◽  
Mohamed A. I. Abou El Hassan ◽  
Winald R. Gerritsen ◽  
...  
2011 ◽  
Vol 33 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Jae-Hwan Kim ◽  
Tao Zhong ◽  
In-Cheol Cho ◽  
Hyun-Tae Lim ◽  
Chae-Kyoung Yoo ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1562-1562
Author(s):  
Marilyn Parra ◽  
Jeff Tan ◽  
Narla Mohandas ◽  
John G. Conboy

Abstract The protein 4.1R gene is a large transcription unit (240kb) that utilizes complex RNA processing pathways to encode distinct protein isoforms, both during erythropoiesis and also in nonerythroid cells. Proper regulation of these pathways is essential for stage-specific synthesis of the 80-kDa isoforms of 4.1R protein during terminal erythroid differentiation. The 5′ region of the gene contains multiple alternative first exons that map far upstream of the coding exons, and we have shown previously that promoter choice is coupled to alternative splicing decisions 100kb downstream in exon 2′/2. Transcripts that initiate at exon 1A predominate in late stages of erythropoiesis and splice only to a weak internal 3′ splice acceptor site in exon 2, skipping translation start site AUG1 and ensuring proper translation initiation at AUG2 in exon 4 for synthesis of the 80-kDa isoforms. In contrast, 4.1 transcripts initiated at exons 1B or 1C exclusively splice to the strong first 3′ splice acceptor site at exon 2′ to include AUG1 and encode a higher molecular weight 135-kDa isoform known to interact with different affinity to major erythroid membrane proteins in earlier stages of erythropoiesis. Our studies show that this linkage between transcription and splicing is (a) cell type independent; (b) conserved in the 4.1R gene from fish to man; and (c) conserved in the paralogous 4.1B gene. Our recent functional studies suggest that a novel re-splicing mechanism, reminiscent of recursive splicing of large introns previously described in the Drosophila ubx gene, may couple promoter choice with downstream splicing in the 4.1R gene. Using minigenes that reproduce the differential splicing patterns in transfected mammalian cells, we have shown that accurate splicing of exon 1A requires a unique downstream regulatory element. This element maps several kilobases downstream of exon 1A and is conserved among mammals. Analysis of wild type and mutated minigenes suggests a two step splicing model in which this element behaves as a temporary “intra-exon” that is present in a splicing intermediate but eliminated from the mature mRNA. According to this model, the regulatory element behaves as an exon in the first step as its consensus 5′ donor site splices to the strong 3′ splice site of exon 2′, removing this splice site pair and joining the intra-exon directly to exon 2′. In the second step, the juxtaposed region of the intra-exon then behaves as an intron, contributing to the activation of the weak internal splice acceptor at exon 2. This second splicing event joins exon 1A to exon 2, thus deleting the intra-exon, the 2′ region (and AUG1) and generating a mature 5′ end capable of encoding 80-kDa 4.1R. Importantly, pre-mRNA constructs that lack the intra-exon, or have a mutated intra-exon 5′ splice donor site, are uncoupled and exhibit inappropriate splicing of exon 1A to the first acceptor site at exon 2′. In support of the generality of this model, we have identified a candidate intra-exon with similar sequence properties in the long 5′ region of the human 4.1B gene, and have demonstrated that this element successfully rescues proper splicing of 4.1R exon 1A in our minigenes. Detailed molecular analysis is under way to identify the specific cis and trans elements required to effect this unusual, long-distance coupling between RNA processing events which have implications for detailed mechanistic understanding of membrane assembly during erythropoiesis.


2004 ◽  
Vol 85 (9) ◽  
pp. 2719-2726 ◽  
Author(s):  
Rémy Froissart ◽  
Maryline Uzest ◽  
Virginia Ruiz-Ferrer ◽  
Martin Drucker ◽  
Eugénie Hébrard ◽  
...  

Alternative splicing usually leads to an increase in the number of gene products that can be derived from a single transcript. Here, a different and novel use of alternative splicing – as a means to control the amount of a potentially toxic gene product in the plant pararetrovirus Cauliflower mosaic virus (CaMV) – is reported. About 70 % of the CaMV 35S RNA, which serves as a substrate for both reverse transcription and polycistronic mRNA, is spliced into four additional RNA species. Splicing occurs between four donor sites – one in the 5′ untranslated region and three within open reading frame (ORF) I – and one unique acceptor site at position 1508 in ORF II. A previous study revealed that the acceptor site is vital for CaMV infectivity and expression of ORFs III and IV from one of the spliced RNA species suggested that splicing may facilitate expression of downstream CaMV ORFs. However, it is shown here that deleting the splice acceptor site and replacing ORF II with a cargo ORF that lacks splice acceptor sites does not interfere with virus proliferation. Furthermore, it is demonstrated that whenever P2 cannot accumulate in infected tissues, the splice acceptor site at position 1508 is no longer vital and has little effect on virus replication. This suggests that the vital role of splicing in CaMV is regulation of P2 expression and that P2 exhibits biological properties that, whilst indispensable for virus–vector interactions, can block in planta virus infection if this regulation is abolished.


2014 ◽  
Vol 56 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Alicja Piasecka ◽  
Paweł Brzuzan ◽  
Maciej Woźny ◽  
Sławomir Ciesielski ◽  
Dariusz Kaczmarczyk

2003 ◽  
Vol 23 (13) ◽  
pp. 4687-4700 ◽  
Author(s):  
B. Kate Dredge ◽  
Robert B. Darnell

ABSTRACT Nova is a neuron-specific RNA binding protein targeted in patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia, which is characterized by failure of inhibition of brainstem and spinal motor systems. Here, we have biochemically confirmed the observation that splicing regulation of the inhibitory GABAA receptor γ2 (GABAARγ2) subunit pre-mRNA exon E9 is disrupted in mice lacking Nova-1. To elucidate the mechanism by which Nova-1 regulates GABAARγ2 alternative splicing, we systematically screened minigenes derived from the GABAARγ2 and human β-globin genes for their ability to support Nova-dependent splicing in transient transfection assays. These studies demonstrate that Nova-1 acts directly on GABAARγ2 pre-mRNA to regulate E9 splicing and identify an intronic region that is necessary and sufficient for Nova-dependent enhancement of exon inclusion, which we term the NISE (Nova-dependent intronic splicing enhancer) element. The NISE element (located 80 nucleotides upstream of the splice acceptor site of the downstream exon E10) is composed of repeats of the sequence YCAY, consistent with previous studies of the mechanism by which Nova binds RNA. Mutation of these repeats abolishes binding of Nova-1 to the RNA in vitro and Nova-dependent splicing regulation in vivo. These data provide a molecular basis for understanding Nova regulation of GABAARγ2 alternative splicing and suggest that general dysregulation of Nova's splicing enhancer function may underlie the neurologic defects seen in Nova's absence.


1990 ◽  
Vol 10 (7) ◽  
pp. 3492-3504 ◽  
Author(s):  
G Rudenko ◽  
S Le Blancq ◽  
J Smith ◽  
M G Lee ◽  
A Rattray ◽  
...  

At least one of the procyclic acidic repetitive protein (PARP or procyclin) loci of Trypanosoma brucei is a small (5- to 6-kilobase) polycistronic transcription unit which is transcribed in an alpha-amanitin-resistant manner. Its single promoter, as mapped by run-on transcription analysis and UV inactivation of transcription, is located immediately upstream of the first alpha-PARP gene. Transcription termination occurs in a region approximately 3 kilobases downstream of the beta-PARP gene. The location of the promoter was confirmed by its ability to direct transcription of the bacterial chloramphenicol acetyltransferase gene in insect-form (procyclic) T. brucei. The putative PARP promoter is located in the region between the 3' splice acceptor site (nucleotide position 0) and nucleotide position -196 upstream of the alpha-PARP genes. Regulatory regions influencing the levels of PARP expression may be located further upstream. We conclude that a single promoter, which is located very close to the 3' splice acceptor site of the alpha-PARP genes, directs the transcription of a small, polycistronic, and alpha-amanitin-resistant transcription unit.


Sign in / Sign up

Export Citation Format

Share Document