Mechanisms That Link Promoter Choice with Downstream Alternative Splicing in the Erythroid Protein 4.1R Gene.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1562-1562
Author(s):  
Marilyn Parra ◽  
Jeff Tan ◽  
Narla Mohandas ◽  
John G. Conboy

Abstract The protein 4.1R gene is a large transcription unit (240kb) that utilizes complex RNA processing pathways to encode distinct protein isoforms, both during erythropoiesis and also in nonerythroid cells. Proper regulation of these pathways is essential for stage-specific synthesis of the 80-kDa isoforms of 4.1R protein during terminal erythroid differentiation. The 5′ region of the gene contains multiple alternative first exons that map far upstream of the coding exons, and we have shown previously that promoter choice is coupled to alternative splicing decisions 100kb downstream in exon 2′/2. Transcripts that initiate at exon 1A predominate in late stages of erythropoiesis and splice only to a weak internal 3′ splice acceptor site in exon 2, skipping translation start site AUG1 and ensuring proper translation initiation at AUG2 in exon 4 for synthesis of the 80-kDa isoforms. In contrast, 4.1 transcripts initiated at exons 1B or 1C exclusively splice to the strong first 3′ splice acceptor site at exon 2′ to include AUG1 and encode a higher molecular weight 135-kDa isoform known to interact with different affinity to major erythroid membrane proteins in earlier stages of erythropoiesis. Our studies show that this linkage between transcription and splicing is (a) cell type independent; (b) conserved in the 4.1R gene from fish to man; and (c) conserved in the paralogous 4.1B gene. Our recent functional studies suggest that a novel re-splicing mechanism, reminiscent of recursive splicing of large introns previously described in the Drosophila ubx gene, may couple promoter choice with downstream splicing in the 4.1R gene. Using minigenes that reproduce the differential splicing patterns in transfected mammalian cells, we have shown that accurate splicing of exon 1A requires a unique downstream regulatory element. This element maps several kilobases downstream of exon 1A and is conserved among mammals. Analysis of wild type and mutated minigenes suggests a two step splicing model in which this element behaves as a temporary “intra-exon” that is present in a splicing intermediate but eliminated from the mature mRNA. According to this model, the regulatory element behaves as an exon in the first step as its consensus 5′ donor site splices to the strong 3′ splice site of exon 2′, removing this splice site pair and joining the intra-exon directly to exon 2′. In the second step, the juxtaposed region of the intra-exon then behaves as an intron, contributing to the activation of the weak internal splice acceptor at exon 2. This second splicing event joins exon 1A to exon 2, thus deleting the intra-exon, the 2′ region (and AUG1) and generating a mature 5′ end capable of encoding 80-kDa 4.1R. Importantly, pre-mRNA constructs that lack the intra-exon, or have a mutated intra-exon 5′ splice donor site, are uncoupled and exhibit inappropriate splicing of exon 1A to the first acceptor site at exon 2′. In support of the generality of this model, we have identified a candidate intra-exon with similar sequence properties in the long 5′ region of the human 4.1B gene, and have demonstrated that this element successfully rescues proper splicing of 4.1R exon 1A in our minigenes. Detailed molecular analysis is under way to identify the specific cis and trans elements required to effect this unusual, long-distance coupling between RNA processing events which have implications for detailed mechanistic understanding of membrane assembly during erythropoiesis.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1664-1664
Author(s):  
Jeff Tan ◽  
Marilyn K. Parra ◽  
Narla Mohandas ◽  
John G. Conboy

Abstract The protein 4.1R gene is regulated by complex pre-mRNA processing events that facilitate the synthesis of protein isoforms with different structure, function, and subcellular localization in red cells and various nucleated cell types. One of these events involves the stage-specific activation of exon 16 inclusion in erythroblasts, which mechanically stabilizes the membrane skeleton by increasing the protein’s affinity for spectrin and actin. Some of the splicing factor proteins and RNA regulatory elements responsible for this tissue-specific alternative splicing event have been defined. Here we focus on another RNA processing event, in the 5′ end of the transcript that can affect the structure and function of the membrane binding domain of protein 4.1R. We have shown that 4.1R transcripts originating at three far upstream alternative promoters/first exons splice differentially to alternative acceptor sites in exon 2′/2 in a manner that suggests strict coupling between transcription and alternative splicing events. A precisely analogous gene organization and RNA processing pattern has also been shown to occur in the paralogous 4.1B gene. Now we demonstrate that this coupling is evolutionarily conserved among several vertebrate classes from fish to mammals. The 4.1R and 4.1B genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5′-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a short sequence designated as exon 2′ (17-33nt). Conversely, alternative first exons 1B and/or 1C always splice to the stronger first acceptor site, retaining exon 2′. These correlations are independent of tissue type or species of origin. Since exon 2′ contains a translation initiation site, this regulated splicing event generate protein isoforms with distinct N-termini. We propose that these 4.1 genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing. We have recently constructed a 9kb “minigene” that successfully reproduces the differential splicing patterns of exons 1A and 1B to exon 2′/2 in transfected cells. This minigene will facilitate identification of the determinants that guide coupling. Current experiments are testing the importance for proper splicing of the transcriptional promoter, first exon sequences, length and sequence of the intron, and sequence of a conserved element within exon 2′. Ultimately these studies should provide new insights into the mechanisms of coupling between far upstream, transcription-related processes and downstream alternative splicing.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4036-4036
Author(s):  
Marilyn K Parra ◽  
Narla Mohandas ◽  
John G. Conboy

Abstract Abstract 4036 Poster Board III-972 The protein 4.1R gene is a large complex gene with two translation initiation sites (AUG1 and AUG2) that encode protein isoforms with distinct N-terminal structure and function. Expression of these isoforms is regulated by alternative splicing at either of two splice acceptor sites that flank exon 2' (E2'), in which AUG1 is located. In late erythroblasts E2' is excluded, ensuring translation at AUG2 and synthesis of 80kDa protein 4.1R isoforms. Our earlier studies (EMBO J. 27:122-31, 2008) described a two-step intrasplicing pathway that enforces this splicing outcome exclusively in 4.1R pre-mRNA initiated at exon 1A (E1A), the major transcription start site in late erythropoiesis. The downstream exon 1B (E1B) first splices to the proximal acceptor site at E2' to generate an intermediate structure, which is then re-processed by splicing of E1A to the internal acceptor at E2, removing E1B as well as E2'/AUG1. Experiments with minigenes suggested that intrasplicing is likely independent of specific promoter elements at E1A, but absolutely requires 5' splice site and branch point motifs associated with E1B. Here we sought evidence for functionality of these latter elements in the more physiological context of the endogenous 4.1R gene. The intrasplicing model predicts that morpholino oligonucleotides complementary to key regulatory motifs will block the first step of the pathway in natural 4.1R pre-mRNA transcripts, and yield inappropriate splicing of E1A to the first acceptor at E2'. Antisense morpholinos directed against the E1B branchpoint or E1B 5'splice site were transfected into cells and 4.1R splicing was examined 48hrs later by RT-PCR analysis. Both anti-4.1 morpholinos, but not a control morpholino, resulted in a concentration-dependent shift of E1A splicing to the proximal E2' acceptor site. In other studies we explored whether intrasplicing could occur internally within a gene, using a model pre-mRNA in which a constitutive exon was engineered between E1A and E1B. Analysis of this experiment suggested that any exon upstream of active E1B would follow the intrasplicing pathway and delete E2'. We speculate that internal E1B-like elements in other genes could be selectively activated or silenced by splicing regulatory motifs in order to control downstream splice acceptor choice. Preliminary experiments indicate that weakening the E1B 5' splice site and its upstream pyrimidine tract might permit such regulation as observed for other alternative exons. Together these results provide additional support for the intrasplicing model and suggest that it could function more widely in human genes to coordinate splicing events and generate multiple protein isoforms with distinct functions. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 9036-9036
Author(s):  
Magdalena Jurkiewicz ◽  
Anjali Saqi ◽  
Mahesh M Mansukhani ◽  
Vaishali Hodel ◽  
Anamaria Krull ◽  
...  

9036 Background: Exon 14 skipping mutations in the mesenchymal-epithelial transition ( MET) gene are reported in 2-5% of lung adenocarcinomas and are mutually exclusive of other driver mutations. Small-molecule MET tyrosine kinase inhibitors, capmatinib and tepotinib, showed durable responses in previously treated and treatment-naïve patients harboring MET-exon-14 skipping mutations. Studies suggest that for detection of MET-ex14 mutations, DNA-based assays alone may be sub-optimal when compared to RNA-based NGS assays. We compared the performance of DNA and RNA-based assays for detection of MET-ex14 variants. Methods: We examined NGS-based profiling data of lung adenocarcinomas (or when this diagnosis could not be excluded) to identify MET-ex14 mutations missed by DNA but identified by RNA analysis. The carcinomas were profiled by a DNA-based NGS panel that targets MET exons 2, 14, 16, 18 and 19. Cases without driver mutations were reflexed to an NGS-based RNA fusion panel (Archer’s Anchored Multiplex PCR). Results: Over a 21-month period, MET-ex14 skipping events were detected in 16/644 (2.5%) lung carcinomas by DNA profiling. RNA analysis on driver-negative cases identified 9 additional MET-ex14 mutations. All 16 MET-ex14 DNA variants occurred at or around the intron 14 splice donor site, as the assay did not include the intron 13 splice acceptor site. Clinical characteristics of the MET positive cohort include a male to female ratio of 0.8:1.0, an average age of 76.5 years and 52% non-smoker status. All tumors were adenocarcinomas (including one with a < 10% spindle/pleomorphic component) with the exception of 3 adenosquamous carcinomas and 1 squamous cell carcinoma. Conclusions: DNA based NGS-panels can potentially miss MET-ex14 skipping events in lung carcinomas, when the primers do not target both 3′ splice site of intron 13, and the 5′ splice site of intron 14. A reflex work flow interrogating RNA fusions can potentially capture such events. The clinical and molecular characterization of the variants detected only by RNA NGS assays warrants further exploration.


2011 ◽  
Vol 33 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Jae-Hwan Kim ◽  
Tao Zhong ◽  
In-Cheol Cho ◽  
Hyun-Tae Lim ◽  
Chae-Kyoung Yoo ◽  
...  

1991 ◽  
Vol 11 (6) ◽  
pp. 3180-3190
Author(s):  
J Huang ◽  
L H van der Ploeg

Numerous protein-coding genes of the protozoan Trypanosoma brucei are arranged in tandem arrays that are transcribed polycistronically. The pre-mRNA transcripts are processed by trans splicing, leading to the addition of a capped 39-nucleotide (nt) miniexon and by poly(A) addition. We wished to determine the order of the RNA processing events at the hsp70 locus and address the potential occurrence of cotranscriptional RNA processing. We determined the rate of transcriptional elongation at the hsp70 locus in isolated nuclei, which measured between 20 and 40 nt/min. This low rate of RNA chain elongation allowed us to label the 3' end of hsp70 nascent RNA with a short (about 180-nt) 32P tail. The structure of the labeled nascent hsp70 RNA could then be analyzed by RNase T1 and RNase T1/RNase A mapping. We show that the trans splicing of hsp70 pre-mRNA did not occur immediately after the synthesis of the 3' splice acceptor site, and nascent RNA molecules that contained about 550 nt of RNA beyond the 3' splice acceptor site still had not acquired a miniexon. In contrast, nascent RNA with a 5' end that mapped to the polyadenylation site of the hsp70 genes could be detected, indicating that maturation of the pre-mRNA in trypanosomes involves a rapid cleavage of the nascent hsp70 RNA (within seconds after synthesis of the site) for poly(A) addition. Our data suggest that polycistronic pre-mRNA is unlikely to be synthesized in toto and rather appears to be processed cotranscriptionally by cleavage for poly(A) addition.


1990 ◽  
Vol 10 (2) ◽  
pp. 696-704 ◽  
Author(s):  
R A Katz ◽  
A M Skalka

The full-length retroviral transcript serves as genomic RNA for progeny virions, as an mRNA for structural proteins and enzymes, and as a pre-mRNA substrate for splicing that yields subgenomic mRNAs that encode other essential proteins. Thus, RNA splicing to form subgenomic mRNAs must be incomplete or regulated in order to preserve some of the full-length transcripts. We have used the avian sarcoma virus system to delineate the viral functions that are required in the regulation of the splicing event that forms the envelope glycoprotein (env) subgenomic mRNA. We observed previously that a specific insertion mutation just 5' of the env splice acceptor site resulted in nearly complete splicing to form env mRNA and a concomitant replication defect which is presumably due to a deficit of the full-length transcript. Replication-competent pseudorevertants contained second-site mutations that restored splicing control, and these mapped either just upstream or downstream of the env splice acceptor site. In this report, we show that splicing control at this site does not require expression of any known viral replication protein(s), nor does it appear to require the viral splice donor site. From these results and analysis of additional splicing mutations obtained by in vivo selection, we conclude that splicing is controlled through the maintenance of suboptimal cis-acting signals in the viral RNA that alter the efficiency of recognition by the cellular splicing machinery.


1991 ◽  
Vol 11 (6) ◽  
pp. 3180-3190 ◽  
Author(s):  
J Huang ◽  
L H van der Ploeg

Numerous protein-coding genes of the protozoan Trypanosoma brucei are arranged in tandem arrays that are transcribed polycistronically. The pre-mRNA transcripts are processed by trans splicing, leading to the addition of a capped 39-nucleotide (nt) miniexon and by poly(A) addition. We wished to determine the order of the RNA processing events at the hsp70 locus and address the potential occurrence of cotranscriptional RNA processing. We determined the rate of transcriptional elongation at the hsp70 locus in isolated nuclei, which measured between 20 and 40 nt/min. This low rate of RNA chain elongation allowed us to label the 3' end of hsp70 nascent RNA with a short (about 180-nt) 32P tail. The structure of the labeled nascent hsp70 RNA could then be analyzed by RNase T1 and RNase T1/RNase A mapping. We show that the trans splicing of hsp70 pre-mRNA did not occur immediately after the synthesis of the 3' splice acceptor site, and nascent RNA molecules that contained about 550 nt of RNA beyond the 3' splice acceptor site still had not acquired a miniexon. In contrast, nascent RNA with a 5' end that mapped to the polyadenylation site of the hsp70 genes could be detected, indicating that maturation of the pre-mRNA in trypanosomes involves a rapid cleavage of the nascent hsp70 RNA (within seconds after synthesis of the site) for poly(A) addition. Our data suggest that polycistronic pre-mRNA is unlikely to be synthesized in toto and rather appears to be processed cotranscriptionally by cleavage for poly(A) addition.


2001 ◽  
Vol 171 (3) ◽  
pp. 397-402 ◽  
Author(s):  
HH Lee ◽  
SF Chang

Maturation of primary RNA transcripts of eukaryotic genes often involves the removal of introns and joining of exons. The fidelity of RNA splicing is dependent on the identity of the nucleotide (nt) sequences at exon/intron boundaries. Most importantly, the highly conserved intronic 5'GT and 3'AG sequences are essential for correct splicing. Substitution of GT by any other nt leads to incomplete mRNA and a disruption of protein structure. We describe here the results of our transfection experiments in COS-1 cells with a CYP21 genomic construct that contained an IVS 2+1G-->A mutation. Analysis of the transcripts by RT-PCR revealed that two different transcripts were generated by this mutant genome. In all the splicing products, we found that the entire exon 2 was deleted. Surprisingly, 30% of the transcripts from this mutant CYP21 genome were accompanied by an inclusion of 3' intron 2 sequences due to the use of a different splice acceptor site. This is the first report of the molecular characterization of a splice donor site mutation in CYP21 via transcription in COS-1 cells.


2005 ◽  
Vol 7 (8) ◽  
pp. 1053-1062 ◽  
Author(s):  
Jan E. Carette ◽  
Harm C. A. Graat ◽  
Frederik H. E. Schagen ◽  
Mohamed A. I. Abou El Hassan ◽  
Winald R. Gerritsen ◽  
...  

2004 ◽  
Vol 85 (9) ◽  
pp. 2719-2726 ◽  
Author(s):  
Rémy Froissart ◽  
Maryline Uzest ◽  
Virginia Ruiz-Ferrer ◽  
Martin Drucker ◽  
Eugénie Hébrard ◽  
...  

Alternative splicing usually leads to an increase in the number of gene products that can be derived from a single transcript. Here, a different and novel use of alternative splicing – as a means to control the amount of a potentially toxic gene product in the plant pararetrovirus Cauliflower mosaic virus (CaMV) – is reported. About 70 % of the CaMV 35S RNA, which serves as a substrate for both reverse transcription and polycistronic mRNA, is spliced into four additional RNA species. Splicing occurs between four donor sites – one in the 5′ untranslated region and three within open reading frame (ORF) I – and one unique acceptor site at position 1508 in ORF II. A previous study revealed that the acceptor site is vital for CaMV infectivity and expression of ORFs III and IV from one of the spliced RNA species suggested that splicing may facilitate expression of downstream CaMV ORFs. However, it is shown here that deleting the splice acceptor site and replacing ORF II with a cargo ORF that lacks splice acceptor sites does not interfere with virus proliferation. Furthermore, it is demonstrated that whenever P2 cannot accumulate in infected tissues, the splice acceptor site at position 1508 is no longer vital and has little effect on virus replication. This suggests that the vital role of splicing in CaMV is regulation of P2 expression and that P2 exhibits biological properties that, whilst indispensable for virus–vector interactions, can block in planta virus infection if this regulation is abolished.


Sign in / Sign up

Export Citation Format

Share Document