splice acceptor
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 19)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xiang-xing Zhu ◽  
Jia-sheng Pan ◽  
Tao Lin ◽  
Ye-cheng Yang ◽  
Qiu-yan Huang ◽  
...  

Abstract Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif (PAM) sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified “all-in-one” ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The “all-in-one” ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3’ end of the intron 5) and splice donor site (GT sequence at the 5’ end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101063
Author(s):  
Brian Joseph ◽  
Chaz Scala ◽  
Shu Kondo ◽  
Eric C Lai

Intronic ratchet points (RPs) are abundant within long introns in the Drosophila genome and consist of juxtaposed splice acceptor and splice donor (SD) sites. Although they appear to encompass zero-nucleotide exons, we recently clarified that intronic recursive splicing (RS) requires a cryptic exon at the RP (an RS-exon), which is subsequently always skipped and thus absent from mRNA. In addition, Drosophila encodes a smaller set of expressed exons bearing features of RS. Here, we investigate mechanisms that regulate the choice between RP and RS-exon SDs. First, analysis of Drosophila RP SD mutants demonstrates that SD competition suppresses inclusion of cryptic exons in endogenous contexts. Second, characterization of RS-exon reporters implicates exonic sequences as influencing choice of RS-exon usage. Using RS-exon swap and mutagenesis assays, we show exonic sequences can determine RS-exon inclusion. Finally, we provide evidence that splicing can suppress utilization of RP SDs to enable RS-exon expression. Overall, multiple factors can influence splicing of Drosophila RS-exons, which usually result in their complete suppression as zero-nucleotide RPs, but occasionally yield translated RS-exons.


2021 ◽  
Vol 7 (6) ◽  
pp. e626
Author(s):  
Eiichiro Amano ◽  
Tomokatsu Yoshida ◽  
Ikuko Mizuta ◽  
Jun Oyama ◽  
Shingo Sakashita ◽  
...  

Background and ObjectiveAlexander disease (ALXDRD) is an autosomal dominant neurologic disorder caused by mutations in the glial fibrillary acidic protein (GFAP) gene and is pathologically defined by Rosenthal fiber accumulation. Most mutations are exonic missense mutations, and splice site mutations are rare. We report a very-late-onset autopsied case of adult-onset ALXDRD with a novel splice site mutation.MethodsGenetic testing of GFAP was performed by Sanger sequencing. Using autopsied brain tissues, GFAP transcript analysis was performed.ResultsThe patient presented mild upper motor neuron symptoms in contrast to the severe atrophy of spinal cord and medulla oblongata. The patient had c.619-1G>A mutation, which is located in the canonical splice acceptor site of intron 3. The brain RNA analysis identified the r.619_621del (p.Glu207del) mutation, which is explained by the activation of the cryptic splice acceptor site in the second and third nucleotides from the 5′ end of the exon 4.DiscussionGFAP gene expression analysis is necessary to clarify the effects of intronic mutations on splicing, even if they are in canonical splice sites. This case showed a much milder phenotype than those in previous cases with missense mutations at Glu207, thereby expanding the clinical spectrum of ALXDRD with Glu207 mutation.


2021 ◽  
Author(s):  
XIANGXING ZHU ◽  
Jia-sheng Pan ◽  
Tao Lin ◽  
Ye-cheng Yang ◽  
Qiu-yan Huang ◽  
...  

Abstract Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif (PAM) sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified “all-in-one” ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The “all-in-one” ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3’ end of the intron 5) and splice donor site (GT sequence at the 5’ end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven Strubbe ◽  
Marieke De Bruyne ◽  
Ulrich Pannicke ◽  
Elien Beyls ◽  
Bart Vandekerckhove ◽  
...  

Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum. However, the molecular and functional implications of these new variants, of which some are non-coding, are often not characterized in detail. Using targeted NGS, we identified a novel homozygous c.465-1G>C splice acceptor site variant in the DCLRE1C gene in a T-B-NK+ SCID patient and fully characterized the molecular and functional impact. By performing a minigene splicing reporter assay, we revealed deregulated splicing of the DCLRE1C transcript since a cryptic splice acceptor in exon 7 was employed. This induced a frameshift and the generation of a p.Arg155Serfs*15 premature termination codon (PTC) within all DCLRE1C splice variants, resulting in the absence of full-length ARTEMIS protein. Consistently, a V(D)J recombination assay and a G0 micronucleus assay demonstrated the inability of the predicted mutant ARTEMIS protein to perform V(D)J recombination and DNA damage repair, respectively. Together, these experiments molecularly and functionally clarify how a newly identified c.465-1G>C variant in the DCLRE1C gene is responsible for inducing SCID. In a clinical context, this demonstrates how the experimental validation of new gene variants, that are identified by NGS, can facilitate the diagnosis of SCID which can be vital for implementing appropriate therapies.


2021 ◽  
Author(s):  
Arthur Wickenhagen ◽  
Elena Sugrue ◽  
Spyros Lytras ◽  
Srikeerthana Kuchi ◽  
Matthew L Turnbull ◽  
...  

Cell autonomous antiviral defenses can inhibit the replication of viruses and reduce transmission and disease severity. To better understand the antiviral response to SARS-CoV-2, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that while some people can express a prenylated OAS1 variant, that is membrane-associated and blocks SARS-CoV-2 infection, other people express a cytosolic, nonprenylated OAS1 variant which does not detect SARS-CoV-2 (determined by the splice-acceptor SNP Rs10774671). Alleles encoding nonprenylated OAS1 predominate except in people of African descent. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response. Remarkably, approximately 55 million years ago, retrotransposition ablated the OAS1 prenylation signal in horseshoe bats (the presumed source of SARS-CoV-2). Thus, SARS-CoV-2 never had to adapt to evade this defense. As prenylated OAS1 is widespread in animals, the billions of people that lack a prenylated OAS1 could make humans particularly vulnerable to the spillover of coronaviruses from horseshoe bats.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Korkmaz ◽  
U Aydogdu ◽  
D Inan ◽  
N Keles ◽  
O Yildirimturk

Abstract Funding Acknowledgements Type of funding sources: None. Ebstein anomaly is an extremely rare anomaly of <1% among all congenital heart diseases. Pathologically, the septal and / or posterior leaflet of the tricuspid valve has abnormal locations towards the right ventricular apex. Ebstein anomaly is especially accompanied by atrial septal defect, patent ductus arteriosus, wolf parkinson white syndrome and pulmonary atresia. Defects located in the interventricular septum are called the ventricular septal defect (VSD). They can be single or multiple and congenital or acquired. Isolated VSDs are the most common congenital anomaly in childhood and constitute 20-30% of all congenital heart diseases. VSD can be a part of major congenital malformations ,such as, fallot tetralogy, transposition of the major arteries, double ventricular right ventricle. Left ventricular noncompaction (LVNC) is a relatively common genetic cardiomyopathy, characterized by prominent trabeculations with deep intertrabecular recesses in mainly the left ventricle. Although LVNC often occurs in an isolated entity, it may also be present in various types of congenital heart disease . A combination of Ebstein anomaly, hypertrabeculation and ventricular septal defect is a rare condition. Case Report A 49-year-old male patient presented to the emergency room with shortness of breath and swelling of the legs. The patient had diagnosed an Ebstein anomaly while the military examination in 1988. Already it ‘s known that he has gout disease and uses colchicine but no family history of any disease. On examination of the patient, bilateral ral in respiratory sounds and +++ / +++ pretibial edema in the lower extremity were detected. On his electrocardiogram, the sinus rhythm with first-degree atrioventricular block was observed. The findings on his echocardiographic examination are ejection fraction 30-35% with global left ventricular hypokinesia, Ebstein anomaly (Figure ), perimembranous type VSD, atrial septal aneurysm type 2 and left ventricular hypertrabeculation. His blood table was normal. Medical treatment of heart failure was started for the patient who was interneed to the service. After getting clinical relief, the patient was discharged under medical treatment. Genetic tests were studied while  following up at the heart failure outpatient clinic. In the MYH7 gene, splice-acceptor-2 (PVS1) variation heterozygous was detected. This variant has not been seen in national data banks of genetics. Conclusion The MYH7 gene, localized on chromosome 14p12, is composed of 41 exons and encodes the b-myosin heavy chain, expressed in cardiac muscle. Mutations in the MYH7 gene have been identified in association with left ventricular hypertrabeculation and Ebstein anomaly. In conclusion, this is the first known report of Ebstein anomaly associated with the splice-acceptor-2 variation heterozygous of the MYH7 gene. Abstract Figure


2020 ◽  
Author(s):  
Aabida Saferali ◽  
Zhonghui Xu ◽  
Gloria M. Sheynkman ◽  
Craig P. Hersh ◽  
Michael H. Cho ◽  
...  

AbstractChronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Genome-wide association studies (GWAS) have identified over 80 loci that are associated with COPD and emphysema, however for most of these loci the causal variant and gene are unknown. Here, we utilize lung splice quantitative trait loci (sQTL) data from the Genotype-Tissue Expression project (GTEx) and short read sequencing data from the Lung Tissue Research Consortium (LTRC) to characterize a locus in nephronectin (NPNT) associated with COPD case-control status and lung function. We found that the rs34712979 variant is associated with alternative splice junction use in NPNT, specifically for the junction connecting the 2nd and 4th exons (chr4:105898001-105927336) (p=4.02×10−38). This association colocalized with GWAS data for COPD and lung spirometry measures with a posterior probability of 94%, indicating that the same causal genetic variants in NPNT underlie the associations with COPD risk, spirometric measures of lung function, and splicing. Investigation of NPNT short read sequencing revealed that rs34712979 creates a cryptic splice acceptor site which results in the inclusion of a 3 nucleotide exon extension, coding for a serine residue near the N-terminus of the protein. Using Oxford Nanopore Technologies (ONT) long read sequencing we identified 13 NPNT isoforms, 6 of which are predicted to be protein coding. Two of these are full length isoforms which differ only in the 3 nucleotide exon extension whose occurrence differs by genotype. Overall, our data indicate that rs34712979 modulates COPD risk and lung function by creating a novel splice acceptor which results in the inclusion of a 3 nucelotide sequence coding for a serine in the nephronectin protein sequence. Our findings implicate NPNT splicing in contributing to COPD risk, and identify a novel serine insertion in the nephronectin protein that warrants further study.


Sign in / Sign up

Export Citation Format

Share Document