Modulation of global SUMOylation by Kaposi's sarcoma-associated herpesvirus and its effects on viral gene expression

2017 ◽  
Vol 89 (11) ◽  
pp. 2011-2019 ◽  
Author(s):  
Jinzhong Wang ◽  
Yuying Guo ◽  
Xu Wang ◽  
Rui Zhao ◽  
Ying Wang
2003 ◽  
Vol 23 (6) ◽  
pp. 2055-2067 ◽  
Author(s):  
Yousang Gwack ◽  
Hwa Jin Baek ◽  
Hiroyuki Nakamura ◽  
Sun Hwa Lee ◽  
Michael Meisterernst ◽  
...  

ABSTRACT An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. The RTA transcription activator of Kaposi's sarcoma-associated herpesvirus (KSHV) acts as a molecular switch for lytic reactivation. Here we demonstrate that KSHV RTA recruits CBP, the SWI/SNF chromatin remodeling complex, and the TRAP/Mediator coactivator into viral promoters through interactions with a short acidic sequence in the carboxyl region and that this recruitment is essential for RTA-dependent viral gene expression. The Brg1 subunit of SWI/SNF and the TRAP230 subunit of TRAP/Mediator were shown to interact directly with RTA. Consequently, genetic ablation of these interactions abolished KSHV lytic replication. These results demonstrate that the recruitment of CBP, SWI/SNF, and TRAP/Mediator complexes by RTA is the principal mechanism to direct well-controlled viral gene expression and thereby viral lytic reactivation.


2001 ◽  
Vol 75 (1) ◽  
pp. 458-468 ◽  
Author(s):  
Rolf Renne ◽  
Chris Barry ◽  
Dirk Dittmer ◽  
Nicole Compitello ◽  
Patrick O. Brown ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is the likely etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Common to these malignancies is that tumor cells are latently infected with KSHV. Viral gene expression is limited to a few genes, one of which is the latency-associated nuclear antigen (LANA), the product of ORF73. Examination of the primary sequence of LANA reveals some structural features reminiscent of transcription factors, leading us to hypothesize that LANA may regulate viral and cellular transcription during latency. In reporter gene-based transient transfection assays, we found that LANA can have either positive or negative effects on gene expression. While expression of a reporter gene from several synthetic promoters was increased in the presence of LANA, expression from the human immunodeficiency virus (HIV) long terminal repeat (LTR)—and from NF-κB-dependent reporter genes—was reduced by LANA expression. In addition, the promoter of KSHV ORF73 itself is activated up to 5.5-fold by LANA. This autoregulation may be important in tumorigenesis, because two other genes (v-cyclin and v-FLIP) with likely roles in cell growth and survival are also controlled by this element. To identify cellular genes influenced by LANA, we employed cDNA array-based expression profiling. Six known genes (and nine expressed sequence tags) were found to be upregulated in LANA-expressing cell lines. One of these, Staf-50, is known to inhibit expression from the HIV LTR; most of the other known genes are interferon inducible, although the interferon genes themselves were not induced by LANA. These data demonstrate that LANA expression has effects on cellular and viral gene expression. We suggest that, whether direct or indirect in origin, these effects may play important roles in the pathobiology of KSHV infection.


2017 ◽  
Author(s):  
Charles Hesser ◽  
John Karijolich ◽  
Dan Dominissini ◽  
Chuan He ◽  
Britt Glaunsinger

AbstractMethylation at theN6position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.Author SummaryIn addition to its roles in regulating cellular RNA fate, methylation at theN6position of adenosine (m6A) of mRNA has recently emerged as a mechanism for regulating viral infection. While it has been known for over 40 years that the mRNA of nuclear replicating DNA viruses contain m6A, only recently have studies began to examine the distribution of this modification across viral transcripts, as well as characterize its functional impact upon viral lifecycles. Here, we apply m6A-sequencing to map the location of m6A modifications throughout the transcriptome of the oncogenic human DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV). We show that the m6A machinery functions in a cell type specific manner to either promote or inhibit KSHV gene expression. Thus, the KSHV lifecycle is impacted by the m6A pathway, but the functional outcome may depend on cell lineage specific differences in m6A-based regulation.


2001 ◽  
Vol 75 (17) ◽  
pp. 7882-7892 ◽  
Author(s):  
Alexander C. Garber ◽  
Marla A. Shu ◽  
Jianhong Hu ◽  
Rolf Renne

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The latency-associated nuclear antigen (LANA) is highly expressed in these malignancies and has been shown to play an important role in episomal maintenance, presumably by binding to a putative oriP. In addition, LANA modulates cellular and viral gene expression and interacts with the cellular tumor suppressors p53 and retinoblastoma suppressor protein. Many of these features are reminiscent of Epstein-Barr virus nuclear antigens (EBNAs), a family of six proteins expressed during latency. EBNA-1 is required for episome maintenance, binds to oriP, and strongly activates transcription from two promoters, including its own. We have previously shown that LANA can transactivate its own promoter and therefore asked whether LANA, like EBNA-1, activates transcription by direct binding to DNA. By using recombinant LANA expressed from vaccinia virus vectors for electrophoretic mobility shift assays, we found that LANA does not bind to its own promoter. In contrast, LANA binds specifically to sequences containing an imperfect 20-bp palindrome in the terminal repeat (TR) of KSHV. We further show that the C-terminal domain of LANA is sufficient for site-specific DNA binding. Unlike EBNA-1, which activates transcription through binding of oriP, we found that LANA inhibits transcription from a single TR binding site. A multimerized TR as found in the viral genome results in strong transcriptional suppression when linked to a heterologous promoter. These data suggest that LANA, although fulfilling functions similar to those of EBNA-1, does so by very different mechanisms.


1999 ◽  
Vol 190 (12) ◽  
pp. 1857-1868 ◽  
Author(s):  
D. Dittmer ◽  
C. Stoddart ◽  
R. Renne ◽  
V. Linquist-Stepps ◽  
M.E. Moreno ◽  
...  

Kaposi's sarcoma–associated herpesvirus (KSHV/HHV-8) is a novel human lymphotropic herpesvirus linked to several human neoplasms. To date, no animal model for infection by this virus has been described. We have examined the susceptibility of C.B-17 scid/scid mice implanted with human fetal thymus and liver grafts (SCID-hu Thy/Liv mice) to KSHV infection. KSHV virions were inoculated directly into the implants, and viral DNA and mRNA production was assayed using real-time quantitative polymerase chain reaction. This revealed a biphasic infection, with an early phase of lytic replication accompanied and followed by sustained latency. Ultraviolet irradiation of the inoculum abolished all DNA- and mRNA-derived signals, and infection was inhibited by ganciclovir. Viral gene expression was most abundant in CD19+ B lymphocytes, suggesting that this model faithfully mimics the natural tropism of this virus. Short-term coinfection with HIV-1 did not alter the course of KSHV replication, nor did KSHV alter levels of HIV-1 p24 during the acute phase of the infection. Although no disease was evident in infected animals, SCID-hu Thy/Liv mice should allow the detailed study of KSHV tropism, latency, and drug susceptibility.


2009 ◽  
Vol 83 (11) ◽  
pp. 5869-5880 ◽  
Author(s):  
Sylvain Lefort ◽  
Louis Flamand

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human proliferative disorders, namely, Kaposi's sarcoma, primary effusion lymphomas (PEL), and multicentric Castleman's disease. Lytic DNA replication of KSHV, which is essential for viral propagation, requires the binding of at least two KSHV proteins, replication and transactivation activator (RTA) and K-bZIP, on the lytic origin of replication. Moreover, K-bZIP physically interacts with RTA and represses its transactivation activity on several viral promoters in transient transfection assays. To evaluate the physiological roles of K-bZIP in the context of PEL, we generated BCBL-1 cells with a tetracycline (Tet)-inducible small hairpin RNA (shRNA) directed against the K8 mRNA to knock down K-bZIP expression at different points during KSHV's life cycle. Using this model, we demonstrate that in the absence of K-bZIP expression, dramatic decreases in orf50, orf57, and orf26 transcript expression are observed. Similar effects were seen at the protein level for RTA (immediate-early protein) and K8.1 (late protein) expression. Interestingly, a direct correlation between K-bZIP levels and viral lytic mRNAs was noticed. As a consequence of K-bZIP knockdown, viral DNA replication and virion production were severely impaired. The same effects were observed following knockdown of K-bZIP in another PEL cell line, BC3. Finally, using shRNA-K8-inducible 293 cells, we report that de novo synthesis of K-bZIP is not necessary for initiation of infection and latency establishment. These data support the concept that K-bZIP is essential for lytic viral gene expression, viral DNA replication, and virus propagation in PEL cells.


2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Min Hu ◽  
Najealicka Armstrong ◽  
Edward Seto ◽  
Wenwei Li ◽  
Fanxiu Zhu ◽  
...  

ABSTRACTKaposi’s sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8 [HHV-8]), upon being reactivated, causes serious diseases in immunocompromised individuals. Its reactivation, especially how the cellular regulating mechanisms play roles in KSHV gene expression and viral DNA replication, is not fully understood. In searching for the cellular factors that regulate KSHV gene expression, we found that several histone deacetylases (HDACs) and sirtuins (SIRTs), including HDACs 2, 7, 8, and 11 and SIRTs 4 and 6, repress KSHV ori-Lyt promoter activity. Interestingly, the nuclear protein SIRT6 presents the greatest inhibitory effect on ori-Lyt promoter activity. A more detailed investigation revealed that SIRT6 exerts repressive effects on multiple promoters of KSHV. As a consequence of inhibiting the KSHV promoters, SIRT6 not only represses viral protein production but also inhibits viral DNA replication, as investigated in a KSHV-containing cell line, SLK-iBAC-gfpK52. Depletion of the SIRT6 protein using small interfering RNA could not directly reactivate KSHV from SLK-iBAC-gfpK52 cells but made the reactivation of KSHV by use of a small amount of the reactivator (doxycycline) more effective and enhanced viral DNA replication in the KSHV infection system. We performed DNA chromatin immunoprecipitation (ChIP) assays for SIRT6 in the SLK-iBAC-gfpK52 cell line to determine whether SIRT6 interacts with the KSHV genome in order to exhibit regulatory effects. Our results suggest that SIRT6 interacts with KSHV ori-Lyt and ORF50 promoters. Furthermore, the SIRT6-KSHV DNA interaction is significantly negated by reactivation. Therefore, we identified a cellular regulator, SIRT6, that represses KSHV replication by interacting with KSHV DNA and inhibiting viral gene expression.IMPORTANCEKaposi’s sarcoma-associated herpesvirus (KSHV) is a pathogen causing cancer in the immune-deficient population. The reactivation of KSHV from latency is important for it to be carcinogenic. Our finding that SIRT6 has inhibitory effects on KSHV reactivation by interacting with the viral genome and suppressing viral gene expression is important because it might lead to a strategy of interfering with KSHV reactivation. Overexpression of SIRT6 repressed the activities of several KSHV promoters, leading to reduced gene expression and DNA replication by KSHV in a KSHV bacterial artificial chromosome-containing cell line. Depletion of SIRT6 favored reactivation of KSHV from SLK-iBACV-gfpK52 cells. More importantly, we reveal that SIRT6 interacts with KSHV DNA. Whether the interaction of SIRT6 with KSHV DNA occurs at a global level will be further studied in the future.


Sign in / Sign up

Export Citation Format

Share Document