mobility shift
Recently Published Documents


TOTAL DOCUMENTS

2436
(FIVE YEARS 356)

H-INDEX

107
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
T. V. Divya ◽  
Celin Acharya

Metallothioneins (MTs) are cysteine-rich, metal-sequestering cytosolic proteins that play a key role in maintaining metal homeostasis and detoxification. We had previously characterized NmtA, a MT from the heterocystous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 and demonstrated its role in providing protection against cadmium toxicity. In this study, we illustrate the regulation of Anabaena NmtA by AzuR (Alr0831) belonging to the SmtB/ArsR family of transcriptional repressors. There is currently no experimental evidence for any functional role of AzuR. It is observed that azuR is located within the znuABC operon but in the opposite orientation and remotely away from the nmtA locus. Sequence analysis of AzuR revealed a high degree of sequence identity with Synechococcus SmtB and a distinct α5 metal binding site similar to that of SmtB. In order to characterize AzuR, we overexpressed it in Escherichia coli and purified it by chitin affinity chromatography. Far-UV circular dichroism spectroscopy indicated that the recombinant AzuR protein possessed a properly folded structure. Glutaraldehyde cross-linking and size-exclusion chromatography revealed that AzuR exists as a dimer of ∼28 kDa in solution. Analysis of its putative promoter region [100 bp upstream of nmtA open reading frame (ORF)] identified the presence of a 12–2–12 imperfect inverted repeat as the cis-acting element important for repressor binding. Electrophoretic mobility shift assays (EMSAs) showed concentration-dependent binding of recombinant dimeric AzuR with the promoter indicating that NmtA is indeed a regulatory target of AzuR. Binding of AzuR to DNA was disrupted in the presence of metal ions like Zn2+, Cd2+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. The metal-dependent dissociation of protein–DNA complexes suggested the negative regulation of metal-inducible nmtA expression by AzuR. Overexpression of azuR in its native strain Anabaena 7120 enhanced the susceptibility to cadmium stress significantly. Overall, we propose a negative regulation of Anabaena MT by an α5 SmtB/ArsR metalloregulator AzuR.


2022 ◽  
Author(s):  
Alessandro Dasti ◽  
Maria Carla Antonelli ◽  
Magdalena Arnal Segura ◽  
Alexandros Armaos ◽  
Sarah Bonnin ◽  
...  

The signal transduction and activation of RNA (STAR) family is composed of RNA-binding proteins (RBPs) that play a central role in mammalian development. Nonetheless, the functions and modes of action that STAR proteins have in lineage specification are still poorly understood. Here, we characterized the role of STAR proteins SAM68 and QUAKING (QKI) in pluripotency and differentiation by performing their depletion through CRISPR-Cas9 in mouse embryonic stem cells (mESCs). Combining RNA-sequencing, ribosome profiling and advanced computational predictions, we found that both SAM68 and QKI regulate the mESCs self-renewal and are indispensable for cardiomyocyte differentiation. At the molecular level, we discovered that SAM68 and QKI antagonistically control the expression of cardiogenic factors. Our calculations indicated that SAM68, unlike QKI, binds the cardiogenic-specific transcription factor Gata4 in a region spanning nucleotides 500 to 1000 of the mRNA corresponding to part of the 5' untranslated region and the first exon. We validated the predictions by electrophoretic mobility shift assay and RNA immunoprecipitation showing that SAM68 controls the translation of Gata4 during mESCs differentiation towards the cardiomyocyte lineage.


2022 ◽  
Author(s):  
Yumin Zhang ◽  
Song Liang ◽  
Zihao Pan ◽  
Yong Yu ◽  
Huochun Yao ◽  
...  

Abstract Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs autoregulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.


2022 ◽  
Vol 23 (2) ◽  
pp. 588
Author(s):  
En-Shyh Lin ◽  
Ren-Hong Luo ◽  
Cheng-Yang Huang

Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 μM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31o for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.


Nature ◽  
2022 ◽  
Author(s):  
Shikang Liang ◽  
Sherine E. Thomas ◽  
Amanda K. Chaplin ◽  
Steven W. Hardwick ◽  
Dimitri Y. Chirgadze ◽  
...  

AbstractThe DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5′-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010170
Author(s):  
Dan Wang ◽  
Xinxin Zhang ◽  
Liwen Yin ◽  
Qi Liu ◽  
Zhaoli Yu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


2022 ◽  
Author(s):  
Deeksha Singh ◽  
Hiteshwari Singh ◽  
Nivedita Singh ◽  
Shambhavi Dwivedi ◽  
Prabodh Kumar Trivedi

Plants have evolved complex signaling networks to regulate their growth and development. Some of these signaling components also play a crucial role in secondary metabolite biosynthesis. Among the signaling components identified to date, ELONGATED HYPOCOTYL 5 (HY5), a bZIP family transcription factor is the most investigated and known as the center of transcriptional network hub. However, HY5 has not been characterized from plants known to synthesize important secondary metabolites. In this study, based on homology search and phylogenetic analysis, HY5 has been identified from Nicotiana tobaccum, and characterized for its role in secondary plant product biosynthesis and stress response through developing overexpressing lines and CRISPR/Cas9-based knockout mutant plants. NtHY5 was able to complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. Overexpression of NtHY5 in tobacco led to the up-regulation of the phenylpropanoid pathway genes and enhanced the flavonoid content, whereas mutant plants had the opposite effect. Electrophoretic Mobility Shift Assay (EMSA) suggested that NtHY5 interacts with the promoter of NtMYB12, a transcription factor known to regulate flavonoid biosynthesis. In addition, NtHY5 enhanced the abiotic stress tolerance as evident by the salt tolerance ability of HY5 overexpressing lines by diminishing the ROS accumulation after salt treatment. These data provide credible evidence about the potential role of NtHY5 in light-mediated flavonoid biosynthesis, plant growth and abiotic stress tolerance in tobacco. The photomorphogenic mutant, Nthy5, developed in this study, will help in elucidating the role of the HY5 in different biological processes in tobacco.


2022 ◽  
Vol 119 (1) ◽  
pp. e2101846119
Author(s):  
Tsubasa Kawai ◽  
Kyosuke Shibata ◽  
Ryosuke Akahoshi ◽  
Shunsaku Nishiuchi ◽  
Hirokazu Takahashi ◽  
...  

The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10. Our findings could help improve root system plasticity under variable environments.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 303
Author(s):  
Michael K. Riley ◽  
Wilfred Vermerris

Lignin is an aromatic plant cell wall polymer that is generated in large quantities as a low-value by-product by the pulp and paper industry and by biorefineries that produce renewable fuels and chemicals from plant biomass. Lignin structure varies among plant species and as a function of the method used for its extraction from plant biomass. We first explored the impact of this variation on the physico-chemical properties of lignin nanoparticles (LNPs) produced via a solvent exchange procedure and then examined whether LNPs produced from industrial sources of lignin could be used as delivery vehicles for DNA. Spherical LNPs were formed from birch and wheat BioLignin™ and from poplar thioglycolic acid lignin after dissolving the lignin in tetrahydrofuran (THF) and dialyzing it against water. Dynamic light scattering indicated that the diameter of these LNPs was dependent on the initial concentration of the lignin, while electrophoretic light scattering indicated that the LNPs had a negative zeta potential, which became less negative as the diameter increased. The dynamics of LNP formation as a function of the initial lignin concentration varied as a function of the source of the lignin, as did the absolute value of the zeta potential. After coating the LNPs with cationic poly-l-lysine, an electrophoretic mobility shift assay indicated that DNA could adsorb to LNPs. Upon transfection of human A549 lung carcinoma basal epithelial cells with functionalized LNPs carrying plasmid DNA encoding the enhanced green fluorescent protein (eGFP), green foci were observed under the microscope, and the presence of eGFP in the transfected cells was confirmed by ELISA. The low cytotoxicity of these LNPs and the ability to tailor diameter and zeta potential make these LNPs of interest for future gene therapy applications.


2021 ◽  
Author(s):  
Mei-Qin Zhuo ◽  
Jun Chen ◽  
Mei-Li Wu ◽  
Wen-biao Wang

Abstract In this study, the transcriptional regulation of PI3KC3 by three transcript factors (PPARγ, PPARα and STAT3) and the potential role of PI3KC3 in mediating lipid accumulation were determined in yellow catfish Pelteobagrus fulvidraco. The 5’-deletion assay, overexpression assay, site-mutation assay and electrophoretic mobility shift assay suggested that PPARα, PPARγ and STAT3 negatively regulated the promoter activity of pi3kc3. Moreover, the transcriptional inactivation of pi3kc3 was directly mediated by PPARα and PPARγ under fatty acid (FA) treatment. Using primary hepatocytes from yellow catfish, FA incubation significantly increased triacylglyceride (TG), NEFA content, the mRNA level of pparα, pparγ, stat3 and dnmt3b, the protein level of PPARα, PPARγ and STAT3, and the methylation level of pi3kc3, but significantly reduced the mRNA and protein level of PI3KC3. Our findings offer new insights into the mechanisms for transcriptional regulation of PI3KC3 and for PI3KC3-mediated lipid accumulation in fish.


Sign in / Sign up

Export Citation Format

Share Document