Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network

2010 ◽  
Vol 30 (15) ◽  
pp. 2330-2341 ◽  
Author(s):  
Tobias Sauter ◽  
Björn Weitzenkamp ◽  
Christoph Schneider
2013 ◽  
pp. 1297-1308
Author(s):  
Kang Shou Lu ◽  
John Morgan ◽  
Jeffery Allen

This paper presents an artificial neural network (ANN) for modeling multicategorical land use changes. Compared to conventional statistical models and cellular automata models, ANNs have both the architecture appropriate for addressing complex problems and the power for spatio-temporal prediction. The model consists of two layers with multiple input and output units. Bayesian regularization was used for network training in order to select an optimal model that avoids over-fitting problem. When trained and applied to predict changes in parcel use in a coastal county from 1990 to 2008, the ANN model performed well as measured by high prediction accuracy (82.0-98.5%) and high Kappa coefficient (81.4-97.5%) with only slight variation across five different land use categories. ANN also outperformed the benchmark multinomial logistic regression by average 17.5 percentage points in categorical accuracy and by 9.2 percentage points in overall accuracy. The authors used the ANN model to predict future parcel use change from 2007 to 2030.


Author(s):  
Kang Shou Lu ◽  
John Morgan ◽  
Jeffery Allen

This paper presents an artificial neural network (ANN) for modeling multicategorical land use changes. Compared to conventional statistical models and cellular automata models, ANNs have both the architecture appropriate for addressing complex problems and the power for spatio-temporal prediction. The model consists of two layers with multiple input and output units. Bayesian regularization was used for network training in order to select an optimal model that avoids over-fitting problem. When trained and applied to predict changes in parcel use in a coastal county from 1990 to 2008, the ANN model performed well as measured by high prediction accuracy (82.0-98.5%) and high Kappa coefficient (81.4-97.5%) with only slight variation across five different land use categories. ANN also outperformed the benchmark multinomial logistic regression by average 17.5 percentage points in categorical accuracy and by 9.2 percentage points in overall accuracy. The authors used the ANN model to predict future parcel use change from 2007 to 2030.


2020 ◽  
Vol 106 ◽  
pp. 101856 ◽  
Author(s):  
Jing Zhang ◽  
Aiping Liu ◽  
Min Gao ◽  
Xiang Chen ◽  
Xu Zhang ◽  
...  

2011 ◽  
Vol 2 (3) ◽  
pp. 20-31 ◽  
Author(s):  
Kang Shou Lu ◽  
John Morgan ◽  
Jeffery Allen

This paper presents an artificial neural network (ANN) for modeling multicategorical land use changes. Compared to conventional statistical models and cellular automata models, ANNs have both the architecture appropriate for addressing complex problems and the power for spatio-temporal prediction. The model consists of two layers with multiple input and output units. Bayesian regularization was used for network training in order to select an optimal model that avoids over-fitting problem. When trained and applied to predict changes in parcel use in a coastal county from 1990 to 2008, the ANN model performed well as measured by high prediction accuracy (82.0-98.5%) and high Kappa coefficient (81.4-97.5%) with only slight variation across five different land use categories. ANN also outperformed the benchmark multinomial logistic regression by average 17.5 percentage points in categorical accuracy and by 9.2 percentage points in overall accuracy. The authors used the ANN model to predict future parcel use change from 2007 to 2030.


2021 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Carlos Javier Gamboa-Villafruela ◽  
José Carlos Fernández-Alvarez ◽  
Maykel Márquez-Mijares ◽  
Albenis Pérez-Alarcón ◽  
Alfo José Batista-Leyva

The short-term prediction of precipitation is a difficult spatio-temporal task due to the non-uniform characterization of meteorological structures over time. Currently, neural networks such as convolutional LSTM have shown ability for the spatio-temporal prediction of complex problems. In this research, we propose an LSTM convolutional neural network (CNN-LSTM) architecture for immediate prediction of various short-term precipitation events using satellite data. The CNN-LSTM is trained with NASA Global Precipitation Measurement (GPM) precipitation data sets, each at 30-min intervals. The trained neural network model is used to predict the sixteenth precipitation data of the corresponding fifteen precipitation sequence and up to a time interval of 180 min. The results show that the increase in the number of layers, as well as in the amount of data in the training data set, improves the quality of the forecast.


Author(s):  
Guolei Yang ◽  
Ying Cai ◽  
Chandan K Reddy

We introduce a novel check-in time prediction problem. The goal is to predict the time a user will check-in to a given location. We formulate check-in prediction as a survival analysis problem and propose a Recurrent-Censored Regression (RCR) model. We address the key challenge of check-in data scarcity, which is due to the uneven distribution of check-ins among users/locations. Our idea is to enrich the check-in data with potential visitors, i.e., users who have not visited the location before but are likely to do so. RCR uses recurrent neural network to learn latent representations from historical check-ins of both actual and potential visitors, which is then incorporated with censored regression to make predictions. Experiments show RCR outperforms state-of-the-art event time prediction techniques on real-world datasets.


Sign in / Sign up

Export Citation Format

Share Document