Propagation of climate model biases to biophysical modelling can complicate assessments of climate change impact in agricultural systems

2018 ◽  
Vol 39 (1) ◽  
pp. 424-444 ◽  
Author(s):  
De Li Liu ◽  
Bin Wang ◽  
Jason Evans ◽  
Fei Ji ◽  
Cathy Waters ◽  
...  
2012 ◽  
Vol 9 (11) ◽  
pp. 12765-12795 ◽  
Author(s):  
C. Teutschbein ◽  
J. Seibert

Abstract. In hydrological climate-change impact studies, Regional Climate Models (RCMs) are commonly used to transfer large-scale Global Climate Model (GCM) data to smaller scales and to provide more detailed regional information. However, there are often considerable biases in RCM simulations, which have led to the development of a number of bias correction approaches to provide more realistic climate simulations for impact studies. Bias correction procedures rely on the assumption that RCM biases do not change over time, because correction algorithms and their parameterizations are derived for current climate conditions and assumed to apply also for future climate conditions. This underlying assumption of bias stationarity is the main concern when using bias correction procedures. It is in principle not possible to test whether this assumption is actually fulfilled for future climate conditions. In this study, however, we demonstrate that it is possible to evaluate how well bias correction methods perform for conditions different from those used for calibration. For five Swedish catchments, several time series of RCM simulated precipitation and temperature were obtained from the ENSEMBLES data base and different commonly-used bias correction methods were applied. We then performed a differential split-sample test by dividing the data series into cold and warm respective dry and wet years. This enabled us to evaluate the performance of different bias correction procedures under systematically varying climate conditions. The differential split-sample test resulted in a large spread and a clear bias for some of the correction methods during validation years. More advanced correction methods such as distribution mapping performed relatively well even in the validation period, whereas simpler approaches resulted in the largest deviations and least reliable corrections for changed conditions. Therefore, we question the use of simple bias correction methods such as the widely used delta-change approach and linear scaling for RCM-based climate-change impact studies and recommend using higher-skill bias correction methods.


2020 ◽  
Author(s):  
Mostafa Tarek ◽  
François Brissette ◽  
Richard Arsenault

Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world’s regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged products dataset have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauged-only products (GPCC, CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I, and ERA5) and one gauged, satellite, and reanalysis merged product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 GCMs under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but 4 precipitation datasets outperformed the others for most catchments: they are, in order: MSWEP, CHIRPS, PERSIANN, and ERA5. For the present study, the 2-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the best 4 performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics, but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.


2012 ◽  
Vol 16 (9) ◽  
pp. 3391-3404 ◽  
Author(s):  
U. Ehret ◽  
E. Zehe ◽  
V. Wulfmeyer ◽  
K. Warrach-Sagi ◽  
J. Liebert

Abstract. Despite considerable progress in recent years, output of both global and regional circulation models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem, bias correction (BC; i.e. the correction of model output towards observations in a post-processing step) has now become a standard procedure in climate change impact studies. In this paper we argue that BC is currently often used in an invalid way: it is added to the GCM/RCM model chain without sufficient proof that the consistency of the latter (i.e. the agreement between model dynamics/model output and our judgement) as well as the generality of its applicability increases. BC methods often impair the advantages of circulation models by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Currently used BC methods largely neglect feedback mechanisms, and it is unclear whether they are time-invariant under climate change conditions. Applying BC increases agreement of climate model output with observations in hindcasts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this hides rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of circulation models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future global and regional circulation model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated approaches for ensemble perturbation. With this article, we advocate communicating the entire uncertainty range associated with climate change predictions openly and hope to stimulate a lively discussion on bias correction among the atmospheric and hydrological community and end users of climate change impact studies.


Sign in / Sign up

Export Citation Format

Share Document