model biases
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 48)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-46
Author(s):  
Sarah J. Doherty ◽  
Pablo E. Saide ◽  
Paquita Zuidema ◽  
Yohei Shinozuka ◽  
Gonzalo A. Ferrada ◽  
...  

Abstract. Biomass burning smoke is advected over the southeastern Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly in both magnitude and sign. NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) had deployments for field campaigns off the west coast of Africa in 3 consecutive years (September 2016, August 2017, and October 2018) with the goal of better characterizing this plume as a function of the monthly evolution by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on the comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models, the simulated plume is too vertically diffuse and has smaller vertical gradients, and in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate underestimates in modeled plume concentrations, leading, in general, to underestimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2017) and September (2016). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and, therefore, in the aerosol direct radiative effect. Model biases in cloud fraction, and, therefore, the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is underestimated in the GEOS model; UM-UKCA simulates cloud optical thickness that is significantly too high. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a subset of five comparison grid boxes. A significant finding is that the observed grid box average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five grid boxes, whereas DARE using the grid-box-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.


2021 ◽  
Vol 12 (4) ◽  
pp. 1061-1098
Author(s):  
Mickaël Lalande ◽  
Martin Ménégoz ◽  
Gerhard Krinner ◽  
Kathrin Naegeli ◽  
Stefan Wunderle

Abstract. Climate change over High Mountain Asia (HMA, including the Tibetan Plateau) is investigated over the period 1979–2014 and in future projections following the four Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The skill of 26 Coupled Model Intercomparison Project phase 6 (CMIP6) models is estimated for near-surface air temperature, snow cover extent and total precipitation, and 10 of them are used to describe their projections until 2100. Similarly to previous CMIP models, this new generation of general circulation models (GCMs) shows a mean cold bias over this area reaching −1.9 [−8.2 to 2.9] ∘C (90 % confidence interval) in comparison with the Climate Research Unit (CRU) observational dataset, associated with a snow cover mean overestimation of 12 % [−13 % to 43 %], corresponding to a relative bias of 52 % [−53 % to 183 %] in comparison with the NOAA Climate Data Record (CDR) satellite dataset. The temperature and snow cover model biases are more pronounced in winter. Simulated precipitation rates are overestimated by 1.5 [0.3 to 2.9] mm d−1, corresponding to a relative bias of 143 % [31 % to 281 %], but this might be an apparent bias caused by the undercatch of solid precipitation in the APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) observational reference. For most models, the cold surface bias is associated with an overestimation of snow cover extent, but this relationship does not hold for all models, suggesting that the processes of the origin of the biases can differ from one model to another. A significant correlation between snow cover bias and surface elevation is found, and to a lesser extent between temperature bias and surface elevation, highlighting the model weaknesses at high elevation. The models with the best performance for temperature are not necessarily the most skillful for the other variables, and there is no clear relationship between model resolution and model skill. This highlights the need for a better understanding of the physical processes driving the climate in this complex topographic area, as well as for further parameterization developments adapted to such areas. A dependency of the simulated past trends on the model biases is found for some variables and seasons; however, some highly biased models fall within the range of observed trends, suggesting that model bias is not a robust criterion to discard models in trend analysis. The HMA median warming simulated over 2081–2100 with respect to 1995–2014 ranges from 1.9 [1.2 to 2.7] ∘C for SSP1-2.6 to 6.5 [4.9 to 9.0] ∘C for SSP5-8.5. This general warming is associated with a relative median snow cover extent decrease from −9.4 % [−16.4 % to −5.0 %] to −32.2 % [−49.1 % to −25.0 %] and a relative median precipitation increase from 8.5 % [4.8 % to 18.2 %] to 24.9 % [14.4 % to 48.1 %] by the end of the century in these respective scenarios. The warming is 11 % higher over HMA than over the other Northern Hemisphere continental surfaces, excluding the Arctic area. Seasonal temperature, snow cover and precipitation changes over HMA show a linear relationship with the global surface air temperature (GSAT), except for summer snow cover which shows a slower decrease at strong levels of GSAT.


2021 ◽  
Vol 149 (10) ◽  
pp. 3449-3468
Author(s):  
Joshua Chun Kwang Lee ◽  
Anurag Dipankar ◽  
Xiang-Yu Huang

AbstractThe diurnal cycle is the most prominent mode of rainfall variability in the tropics, governed mainly by the strong solar heating and land–sea interactions that trigger convection. Over the western Maritime Continent, complex orographic and coastal effects can also play an important role. Weather and climate models often struggle to represent these physical processes, resulting in substantial model biases in simulations over the region. For numerical weather prediction, these biases manifest themselves in the initial conditions, leading to phase and amplitude errors in the diurnal cycle of precipitation. Using a tropical convective-scale data assimilation system, we assimilate 3-hourly radiosonde data from the pilot field campaign of the Years of Maritime Continent, in addition to existing available observations, to diagnose the model biases and assess the relative impacts of the additional wind, temperature, and moisture information on the simulated diurnal cycle of precipitation over the western coast of Sumatra. We show how assimilating such high-frequency in situ observations can improve the simulated diurnal cycle, verified against satellite-derived precipitation, radar-derived precipitation, and rain gauge data. The improvements are due to a better representation of the sea breeze and increased available moisture in the lowest 4 km prior to peak convection. Assimilating wind information alone was sufficient to improve the simulations. We also highlight how during the assimilation, certain multivariate background error constraints and moisture addition in an ad hoc manner can negatively impact the simulations. Other approaches should be explored to better exploit information from such high-frequency observations over this region.


2021 ◽  
Author(s):  
Nicholas L. Tyrrell ◽  
Juho M. Koskentausta ◽  
Alexey Yu. Karpechko

Abstract. The number of sudden stratospheric warmings (SSWs) per year is affected by the phase of the El Niño–Southern Oscillation (ENSO), yet there are discrepancies between the observed and modeled relationship. We investigate how systematic model biases may affect the ENSO-SSW connection. A two-step bias-correction process is applied to the troposphere, stratosphere or full atmosphere of an atmospheric general circulation model. ENSO type sensitivity experiments are then performed to reveal the impact of differing climatologies on the ENSO–SSW teleconnection. The number of SSWs per year is overestimated in the control run, and this statistic is improved when stratospheric biases are reduced. The seasonal cycle of SSWs is also improved by the bias corrections. The composite SSW responses in the stratospheric zonal wind, geopotential height and surface response are well represented in both the control and bias corrected runs. The model response of SSWs to ENSO phase is more linear than in observations, in line with previous modelling studies, and this is not changed by the reduced biases. However, the trend of more wave-1 events during El Niño years than La Niña years is improved in the bias corrected runs.


2021 ◽  
Vol 2 (3) ◽  
pp. 913-925
Author(s):  
Nicholas L. Tyrrell ◽  
Alexey Yu. Karpechko

Abstract. Correctly capturing the teleconnection between the El Niño–Southern Oscillation (ENSO) and Europe is of importance for seasonal prediction. Here we investigate how systematic model biases may affect this teleconnection. A two-step bias correction process is applied to an atmospheric general circulation model to reduce errors in the climatology. The bias corrections are applied to the troposphere and stratosphere independently and jointly to produce a range of climates. ENSO-type sensitivity experiments are then performed to reveal the impact of differing climatologies on the ENSO–Europe teleconnections. The bias corrections do not affect the response of the tropical atmosphere or the Aleutian low to the strong ENSO anomalies imposed in our experiments. However, in El Niño experiments the anomalous upward wave flux and the response of the Northern Hemisphere polar vortex differ between the climatologies. We attribute this to a reduced sensitivity of the upward wave fluxes to the Aleutian low response in the bias correction experiments, where the reduced biases result in a deepened Aleutian low in the base state. Despite the differing responses of the polar vortex, the North Atlantic Oscillation (NAO) response is similar between the climatologies, implying that for strong ENSO events the stratospheric pathway may not be the dominant pathway for the ENSO–North Atlantic teleconnection.


Author(s):  
Clara Orbe ◽  
Darryn W. Waugh ◽  
Stephen Montzka ◽  
Edward J. Dlugokencky ◽  
Susan Strahan ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James S. Risbey ◽  
Dougal T. Squire ◽  
Amanda S. Black ◽  
Timothy DelSole ◽  
Chiara Lepore ◽  
...  

AbstractAssessments of climate forecast skill depend on choices made by the assessor. In this perspective, we use forecasts of the El Niño-Southern-Oscillation to outline the impact of bias-correction on skill. Many assessments of skill from hindcasts (past forecasts) are probably overestimates of attainable forecast skill because the hindcasts are informed by observations over the period assessed that would not be available to real forecasts. Differences between hindcast and forecast skill result from changes in model biases from the period used to form forecast anomalies to the period over which the forecast is made. The relative skill rankings of models can change between hindcast and forecast systems because different models have different changes in bias across periods.


2021 ◽  
Author(s):  
Filippo Giorgi ◽  
Francesca Raffaele

Abstract We investigate the dependency of projected regional changes in surface air temperature (SAT) and precipitation on the model biases, resolution and global temperature sensitivity in two global climate model (GCM) ensembles. End of 21st century changes under high end scenarios normalized in units of Per Degree of Global Warming (PDGW) are examined for CMIP5 (RCP8.5) and CMIP6 (SSP585) ensembles of comparable size over 26 sub-continental scale regions, for December-January-February (DJF) and June-July-August (JJA). We find that the average regional change patterns are very similar between the CMIP5 and CMIP6 ensembles, both for SAT and precipitation, with spatial correlations exceeding 0.84. Also similar are the regional bias patterns over most regions analyzed, suggesting that these two generations of models still share some common systematic errors. A statistically significant relationship between projected regional changes and biases is found in ~ 27% of regional cases for both SAT and precipitation; between regional changes and model resolution in 2% of cases for SAT and 12% of cases for precipitation; and between regional changes and global temperature sensitivity in 19% of cases for SAT and 14% of cases for precipitation. Therefore, we assess that the GCM resolution does not appear to be a significant factor in affecting the sub-continental scale projected changes, at least for the resolution range in the CMIP5 and CMIP6 models, while global temperature sensitivity and especially model biases play a more important role. These dependencies are not always consistent between the CMIP5 and CMIP6 ensembles. Overall, in our assessment the CMIP6 ensemble does not appear to provide substantially different, and presumably improved, regional surface climate change information compared to CMIP5 despite the use of more comprehensive models and somewhat higher resolution.


Sign in / Sign up

Export Citation Format

Share Document