What induces the interdecadal shift of the dipole patterns of summer precipitation trends over the Tibetan Plateau?

Author(s):  
Yong Liu ◽  
Huopo Chen ◽  
Hua Li ◽  
Guoqing Zhang ◽  
Huijun Wang

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.





Author(s):  
Y. Ha ◽  
Y. M. Zhu ◽  
Y. J. Hu ◽  
Z. Zhong

Abstract. Abrupt interdecadal changes in summer precipitation (May – September) over the Indochina Peninsula in the past 40 years have been investigated based on the NCEP-NCAR reanalysis product over 1979–2013 and multiple precipitation datasets. The mechanism for the abrupt change is explored. Results indicate that an abrupt interdecadal change in summer precipitation over the Indochina Peninsula occurred in the middle 1990s, and the annual mean summer precipitation during 1994–2002 increased by about 10% compared to that during 1982–1993. The most significant precipitation change occurred in the central and northern peninsula. Further analysis reveals that the interdecadal decrease in snow cover over the Tibetan Plateau in the winter and spring contributed to the summer precipitation increase over the Indochina Peninsula. The decrease in snow cover over the Tibetan Plateau actually increased the thermal contrast between the Tibetan Plateau and the tropical Indian Ocean-northwestern Pacific, leading to intensified summer monsoon over the northwestern Pacific and the South China Sea. As a result, westerly anomalies occurred from the Bay of Bengal to the northwestern Pacific, while anomalous cyclonic circulation prevailed in the upper levels above East Asia. Correspondingly, the western Pacific subtropical high weakened and shifted eastward. Under the joint effects of the above circulation patterns, the atmosphere became wetter in the Indochina Peninsula and summer precipitation increased. Results of the present study provide a theoretical basis for the prediction of long-term summer precipitation change in the Indochina Peninsula.



2020 ◽  
Vol 237 ◽  
pp. 104841 ◽  
Author(s):  
Yingzhao Ma ◽  
Mengqian Lu ◽  
Cameron Bracken ◽  
Haonan Chen


2013 ◽  
Vol 33 (4) ◽  
pp. 424-436 ◽  
Author(s):  
Shi-Guang Xu ◽  
Zheng Niu ◽  
Da Kuang ◽  
Yan Shen ◽  
Wen-Jiang Huang ◽  
...  


2013 ◽  
Vol 14 (4) ◽  
pp. 227-234 ◽  
Author(s):  
Xiangde Xu ◽  
Chungu Lu ◽  
Yihui Ding ◽  
Xiaohui Shi ◽  
Yudi Guo ◽  
...  


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Zhang Chen ◽  
Lihua Zhu ◽  
Kai Yang ◽  
...  

In recent years, some studies emphasized the influence of western Tibetan Plateau summer snow on the East Asian summer precipitation. With the temperature rise in the past decades, the snow cover over the western Tibetan Plateau in summer has significantly decreased. This raises the question whether the impact of the Tibetan Plateau snow has changed. The present study identifies a prominent change in the influence of the western Tibetan Plateau snow cover on the East Asian summer precipitation. Before the early 2000’s, positive precipitation anomalies extend from the southeastern Tibetan Plateau through the Yangtze River to Japan and Korea and negative anomalies cover southeast China corresponding to more Tibetan Plateau snow cover. After the early 2000’s, with the reduction of snow cover variability, below-normal and above-normal summer precipitation occurs over northern China-Mongolia and northeast Asia, respectively, corresponding to more Tibetan Plateau snow cover. The change in the influence of the Tibetan Plateau snow on the East Asian summer precipitation is associated with an obvious change in the atmospheric circulation anomaly pattern. Before the early 2000’s, the wind anomalies display a south-north contrast pattern with anomalous convergence along the Yangtze River. After the early 2000’s, an anomalous cyclone occupies Northeast China with anomalous southerlies and northerlies over northeast Asia and northern China, respectively. The Tibetan Plateau snow cover variation after the early 2000’s is associated with the northeast Indian summer precipitation. The model experiments confirm that the weakened influence of summer western Tibetan Plateau snow cover on the East Asian atmospheric circulation and precipitation with the reduced snow cover anomalies.



2020 ◽  
Vol 54 (7-8) ◽  
pp. 3525-3539 ◽  
Author(s):  
Tinghai Ou ◽  
Deliang Chen ◽  
Xingchao Chen ◽  
Changgui Lin ◽  
Kun Yang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document