diurnal cycles
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 132)

H-INDEX

53
(FIVE YEARS 5)

2021 ◽  
Vol 22 (2) ◽  
pp. 71-84
Author(s):  
Sindy Maharani ◽  
Hasti Amrih Rejeki

Intisari Madden Julian Oscillation (MJO) merupakan osilasi gelombang submusiman di wilayah tropis yang berpropagasi ke arah timur dari Samudera Hindia melewati Benua Maritim Indonesia (BMI) hingga Samudera Pasifik. Propagasi MJO dapat meningkatkan konvektivitas dan curah hujan pada wilayah yang dilewatinya. Lampung merupakan salah satu wilayah di BMI bagian barat yang berbatasan dengan Samudera Hindia sebagai tempat awal kemunculan MJO. Posisi Lampung tersebut menyebabkan perbedaan insolasi antara daratan dan lautan secara diurnal sehingga siklus diurnal ikut berperan dalam pembentukan cuaca. Oleh karena itu penelitian ini bertujuan untuk mengetahui pengaruh propagasi MJO dari Fase 3-5 pada tahun 2018 terhadap siklus diurnal dinamika atmosfer dan curah hujan di Lampung. Siklus diurnal dianalisis dengan membagi empat periode waktu yaitu dini hari (00.00-06.00 LT), pagi hari (06.00-12.00 LT), siang hari (12.00-18.00 LT) dan malam hari (18.00-00.00 LT). Berdasarkan rata-rata komposit data Reanalysis ECMWF, GSMaP, dan curah hujan observasi didapatkan bahwa selama penjalarannya MJO menguat ketika Fase 3-4 dan melemah ketika Fase 5. Secara diurnal konvektivitas yang kuat dan curah hujan tinggi terjadi di perairan pada dini hari hingga pagi hari, di daerah pesisir pada siang hari, dan di daratan pada malam hari yang meningkat dari Fase 3-4 dan melemah pada Fase 5. Hujan menjalar dari Lampung bagian barat menuju Lampung bagian tengah dengan jeda waktu selama 2-5 jam ketika Fase 3, 4-7 jam ketika Fase 4, dan 1-2 jam ketika Fase 5. Pada Fase 3-5 hujan terjadi di Lampung bagian timur dengan perbedaan waktu 1-3 jam dari Lampung bagian tengah.   Abstract Madden Julian oscillation (MJO) is a sub-seasonal wave oscillation in the tropics that propagates eastward from the Indian Ocean through the Indonesian Maritime Continent (IMC) until the Pacific Ocean. MJO propagation can increase convective and rainfall in the regions it passes. Lampung is one of the regions in the western IMC which near the Indian Ocean for the MJO first appeared. The Lampung position causes different insolation between land and sea diurnally, so the diurnal cycles play an important role in weather formation. Therefore, this study aims to determine the effect of MJO propagation phases 3-5 in 2018 on the diurnal cycle of atmospheric dynamics and rainfall in Lampung. The diurnal cycle was analyzed by dividing four periods of time, in the early morning (00-06 LT), morning (06-12 LT), afternoon (12-18 LT), and night (18-00 LT). Based on the average composite of ECMWF, GSMaP, and precipitation observations data were obtained that propagation MJO strengthens during phase 3-4 and weakens during phase 5. Diurnal strong convective and high rainfall occur in the oceans from early morning to morning, in coastal during the day, and on land at night which increases from phase 3-4 and weakens in phase 5. Rain propagates from western Lampung to central Lampung with a time lag of 2-5 hours during phase 3, 4-7 hours when phases 4, and 1 -2 hours during phase 5. In the 3-5 phase, rain occurs in eastern Lampung with a time difference of 1-3 hours from central Lampung.  


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2603
Author(s):  
James Bunce

The response of carbon fixation in C3 plants to elevated CO2 is relatively larger when photosynthesis is limited by carboxylation capacity (VC) than when limited by electron transport (J). Recent experiments under controlled, steady-state conditions have shown that photosynthesis at elevated CO2 may be limited by VC even at limiting PPFD. These experiments were designed to test whether this also occurs in dynamic field environments. Leaf gas exchange was recorded every 5 min using two identical instruments both attached to the same leaf. The CO2 concentration in one instrument was controlled at 400 μmol mol−1 and one at 600 μmol mol−1. Leaves were exposed to ambient sunlight outdoors, and cuvette air temperatures tracked ambient outside air temperature. The water content of air in the leaf cuvettes was kept close to that of the ambient air. These measurements were conducted on multiple, mostly clear days for each of three species, Glycine max, Lablab purpureus, and Hemerocallis fulva. The results indicated that in all species, photosynthesis was limited by VC rather than J at both ambient and elevated CO2 both at high midday PPFDs and also at limiting PPFDs in the early morning and late afternoon. During brief reductions in PPFD due to midday clouds, photosynthesis became limited by J. The net result of the apparent deactivation of Rubisco at low PPFD was that the relative stimulation of diurnal carbon fixation at elevated CO2 was larger than would be predicted when assuming limitation of photosynthesis by J at low PPFD.


Author(s):  
Aodhan J Sweeney ◽  
Qiang Fu

AbstractAn observationally-based global climatology of the temperature diurnal cycle in the lower stratosphere is derived from eleven different satellites with Global Positioning System-Radio Occultation (GPS-RO) measurements from 2006-2020. Methods used in our analysis allow for accurate characterization of global stratospheric temperature diurnal cycles, even in the high latitudes where the diurnal signal is small but longer timescale variability is large. A climatology of the synthetic Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) Temperature in the Lower Stratosphere (TLS) is presented to assess the accuracy of diurnal cycle climatologies for the MSU and AMSU TLS observations, which have traditionally been generated by model data. The TLS diurnal temperature ranges are typically less than 0.4 K in all latitude bands and seasons investigated. It is shown that the diurnal range (maximum minus minimum temperature) of TLS is largest over southern hemisphere tropical land in the boreal winter season, indicating the important role of deep convection. The range, phase, and seasonality of the TLS diurnal cycle are generally well captured by the WACCM6 simulation and ERA5 reanalysis. We also present an observationally-based diurnal cycle climatology of temperature profiles from 300-10 hPa for various latitude bands and seasons and compare the ERA5 reanalysis with the observations.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Ole Adrian Heggli ◽  
Jan Stupacher ◽  
Peter Vuust

The rhythm of human life is governed by diurnal cycles, as a result of endogenous circadian processes evolved to maximize biological fitness. Even complex aspects of daily life, such as affective states, exhibit systematic diurnal patterns which in turn influence behaviour. As a result, previous research has identified population-level diurnal patterns in affective preference for music. By analysing audio features from over two billion music streaming events on Spotify, we find that the music people listen to divides into five distinct time blocks corresponding to morning, afternoon, evening, night and late night/early morning. By integrating an artificial neural network with Spotify's API, we show a general awareness of diurnal preference in playlists, which is not present to the same extent for individual tracks. Our results demonstrate how music intertwines with our daily lives and highlight how even something as individual as musical preference is influenced by underlying diurnal patterns.


2021 ◽  
Vol 14 (10) ◽  
pp. 6495-6514
Author(s):  
Timothy H. Raupach ◽  
Andrey Martynov ◽  
Luca Nisi ◽  
Alessandro Hering ◽  
Yannick Barton ◽  
...  

Abstract. We present a feasibility study for an object-based method to characterise thunderstorm properties in simulation data from convection-permitting weather models. An existing thunderstorm tracker, the Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) algorithm, was applied to thunderstorms simulated by the Advanced Research Weather Research and Forecasting (AR-WRF) weather model at convection-permitting resolution for a domain centred on Switzerland. Three WRF microphysics parameterisations were tested. The results are compared to independent radar-based observations of thunderstorms derived using the MeteoSwiss Thunderstorms Radar Tracking (TRT) algorithm. TRT was specifically designed to track thunderstorms over the complex Alpine topography of Switzerland. The object-based approach produces statistics on the simulated thunderstorms that can be compared to object-based observation data. The results indicate that the simulations underestimated the occurrence of severe and very large hail compared to the observations. Other properties, including the number of storm cells per day, geographical storm hotspots, thunderstorm diurnal cycles, and storm movement directions and velocities, provide a reasonable match to the observations, which shows the feasibility of the technique for characterisation of simulated thunderstorms over complex terrain.


Author(s):  
James Bunce

The response of carbon fixation in C3 plants to elevated CO2 is relatively larger when photosynthesis is limited by carboxylation capacity (VC) than when limited by electron transport (J). Recent experiments under controlled, steady-state conditions have shown that photosynthesis at elevated CO2 may be limited by VC even at limiting PPFD. These experiments were designed to test whether this also occurs in dynamic field environments. Leaf gas exchange was recorded every 5 minutes using two identical instruments both attached to the same leaf. The CO2 concentration in one instrument was controlled at 400 mol mol-1 and one at 600 mol mol-1. Leaves were exposed to ambient sunlight outdoors, and cuvette air temperatures tracked ambient outside air temperature. The water content of air in the leaf cuvettes was kept close to that of the ambient air. These measurements were conducted on multiple, mostly clear days for each of three species, Glycine max, Lablab purpureus, and Hemerocallis fulva. The results indicated that in all species, photosynthesis was limited by VC rather than J at both ambient and elevated CO2 both at high midday PPFDs and also at limiting PPFDs in the early morning and late afternoon. During brief reductions in PPFD due to midday clouds, photosynthesis became limited by J, The net result of the apparent deactivation of Rubisco at low PPFD was that the relative stimulation of diurnal carbon fixation at elevated CO2 was larger than would be predicted when assuming limitation of photosynthesis by J at low PPFD.


2021 ◽  
Author(s):  
Thorsten Simon ◽  
Georg J. Mayr ◽  
Deborah Morgenstern ◽  
Nikolaus Umlauf ◽  
Achim Zeileis

Abstract The response of lightning to a changing climate is not fully understood. Historic trends of proxies known for fostering convective environments suggest an increase of lightning over large parts of Europe. Since lightning results from the interaction of processes on many scales, as many of these processes as possible must be considered for a comprehensive answer. Recent achievements of decade-long seamless lightning measurements and hourly reanalyses of atmospheric conditions including cloud micro-physics combined with flexible regression techniques have made a reliable reconstruction of lightning down to its seasonally varying diurnal cycle feasible. To include a large variety of land-cover, topographical and atmospheric circulation conditions, the European Eastern Alps and their surroundings are our reconstruction region over a period of four decades. The most intense changes occurred over the high Alps where lightning activity doubled in the past decade compared to the 1980s. There, the lightning season reaches a higher maximum and starts one month earlier, likely due to the earlier snow melt. Diurnally, the peak is up to 50% stronger with more lightning strikes in the afternoon and evening hours. Signals along the southern and northern alpine rim are similar but weaker whereas the flatlands north of the Alps have no significant trend.


2021 ◽  
pp. 1-49
Author(s):  
Biqi Liu ◽  
Guixing Chen ◽  
Wenxin Zeng ◽  
Lanqiang Bai ◽  
Huiling Qin

AbstractMonsoon southerlies can be particularly active for days and produce substantial rainfall over East Asia. These multiday episodes of southerly monsoon surge may exhibit distinct diurnal variations due to regional forcings under given large-scale conditions. This study categorizes the southerly surges into two types with different wind diurnal variations to clarify their influence on rainfall over East Asia. In the summer of 1998–2019, there are 63 episodes of southerly surge with large wind diurnal cycles and 55 episodes with small diurnal cycles. The first type of southerly surges usually occurs with anomalous low-level warming over southeastern China related to the westward extension of the western Pacific subtropical high. The second type of southerly surges instead occurs with anomalous cooling due to the deepened midlatitude trough. They thus represent the different mechanisms downscaling from large-scale conditions to regional diurnal forcings. After the onset of the first type, the intensified monsoon southerlies at night lead to the northward displacement of large-scale ascent and northward water vapor transport with warm moist energy. The monsoon rainband tends to move to the north of 35°N with a robust response in precipitation systems, especially in the meso-α-scale rain events from midnight to morning. As a comparison, the rainband stays at 30°–35°N after the onset of the second type when the strengthened large-scale ascent and water vapor convergence are located relatively south. These differences between the two types of southerly monsoon surges highlight that the multiday large-scale conditions interact with sub-daily regional forcings and greatly regulate the detailed evolution of summer rainband over East Asia.


Sign in / Sign up

Export Citation Format

Share Document