scholarly journals Estimating Summer Precipitation Over the Tibetan Plateau With Geostatistics and Remote Sensing

2013 ◽  
Vol 33 (4) ◽  
pp. 424-436 ◽  
Author(s):  
Shi-Guang Xu ◽  
Zheng Niu ◽  
Da Kuang ◽  
Yan Shen ◽  
Wen-Jiang Huang ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


2013 ◽  
Vol 17 (10) ◽  
pp. 4061-4077 ◽  
Author(s):  
V. H. Phan ◽  
R. C. Lindenbergh ◽  
M. Menenti

Abstract. The Tibetan Plateau is an essential source of water for Southeast Asia. The runoff from its ~34 000 glaciers, which occupy an area of ~50 000 km2, feeds Tibetan lakes and major Asian rivers like the Indus and Brahmaputra. Reported glacial shrinkage likely has an impact on the runoff. Unfortunately, accurate quantification of glacial changes is difficult over the high-relief Tibetan Plateau. However, it has recently been shown that it is possible to directly assess water level changes of a significant number of the ~900 Tibetan lakes with an area over 1 km2. This paper exploits different remote sensing products to create drainage links between Tibetan glaciers, lakes and rivers. The results allow us to differentiate between lakes with and without outlet. In addition, we introduce the notion of geometric dependency of a lake on glacial runoff, defined as the ratio between the total area of glaciers draining into a lake and the total area of the lake catchment. We determined these dependencies for all ~900 sufficiently large Tibetan lakes. To do so, we combined three remote sensing products: the CAREERI glacier mask product, a lake mask product based on the MODIS MOD44W water product and the HydroSHEDS river network product derived from Shuttle Radar Topography Mission (SRTM) elevation data. Using a drainage network analysis, we determined all drainage links between glaciers and lakes. The results show that 25.3% of the total glacier area directly drains into one of 244 Tibetan lakes. The results also give the geometric dependency of each lake on glacial runoff. For example, there are ten lakes with direct glacial runoff from at least 240 km2 of glacier. Three case studies, including one of the well-studied Nam Tso Lake, demonstrate how the geometric dependency of a lake on glacial runoff can be directly linked to hydrological processes.


Author(s):  
Y. Ha ◽  
Y. M. Zhu ◽  
Y. J. Hu ◽  
Z. Zhong

Abstract. Abrupt interdecadal changes in summer precipitation (May – September) over the Indochina Peninsula in the past 40 years have been investigated based on the NCEP-NCAR reanalysis product over 1979–2013 and multiple precipitation datasets. The mechanism for the abrupt change is explored. Results indicate that an abrupt interdecadal change in summer precipitation over the Indochina Peninsula occurred in the middle 1990s, and the annual mean summer precipitation during 1994–2002 increased by about 10% compared to that during 1982–1993. The most significant precipitation change occurred in the central and northern peninsula. Further analysis reveals that the interdecadal decrease in snow cover over the Tibetan Plateau in the winter and spring contributed to the summer precipitation increase over the Indochina Peninsula. The decrease in snow cover over the Tibetan Plateau actually increased the thermal contrast between the Tibetan Plateau and the tropical Indian Ocean-northwestern Pacific, leading to intensified summer monsoon over the northwestern Pacific and the South China Sea. As a result, westerly anomalies occurred from the Bay of Bengal to the northwestern Pacific, while anomalous cyclonic circulation prevailed in the upper levels above East Asia. Correspondingly, the western Pacific subtropical high weakened and shifted eastward. Under the joint effects of the above circulation patterns, the atmosphere became wetter in the Indochina Peninsula and summer precipitation increased. Results of the present study provide a theoretical basis for the prediction of long-term summer precipitation change in the Indochina Peninsula.


2003 ◽  
Vol 28 (1-3) ◽  
pp. 63-74 ◽  
Author(s):  
Yaoming Ma ◽  
Zhongbo Su ◽  
Toshio Koike ◽  
Tandong Yao ◽  
Hirohiko Ishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document