Sea-level changes, river activity, soil development and glaciation around the western margins of the southern North Sea Basin during the Early and early Middle Pleistocene: evidence from Pakefield, Suffolk, UK

2006 ◽  
Vol 21 (2) ◽  
pp. 155-179 ◽  
Author(s):  
Jonathan R. Lee ◽  
James Rose ◽  
Ian Candy ◽  
Rene W. Barendregt

The sedimentary sequence on the shelf of the southern North Sea records Quaternary climatic changes in two ways. They are indicated directly by moraine and glaciofluvial deposits from the Elsterian, Saalian and Weichselian glacial periods when the British and the Scandinavian ice sheets covered parts of the area. An indirect response to the climate is indicated by sea-level changes. Phases of cooling are characterized by regressions and low sea-level stands; phases of warming are indicated by marine transgressions and high sea levels during the Holsteinian, Eemian and Holocene periods. The seismic characteristics of the different lithological units, the sedimentary sequences and their fossil content are described for the offshore area and the adjacent coastal zone. This provides a record of the interaction of sedimentary processes and the palaeogeographic development as a response to climatic changes.


2018 ◽  
Vol 14 (3) ◽  
pp. 397-411 ◽  
Author(s):  
Timme H. Donders ◽  
Niels A. G. M. van Helmond ◽  
Roel Verreussel ◽  
Dirk Munsterman ◽  
Johan ten Veen ◽  
...  

Abstract. We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (∼2.6–1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial–interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence. During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm–cold alterations are synchronous between land and sea, but lead the relative sea level change by 3000–8000 years. The record provides evidence for a dominantly Northern Hemisphere-driven cooling that leads the glacial buildup and varies on the obliquity timescale. Southward migration of Arctic surface water masses during glacials, indicated by cool-water dinoflagellate cyst assemblages, is furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth.


Author(s):  
Juliane Scheder ◽  
Friederike Bungenstock ◽  
Kristin Haynert ◽  
Anna Pint ◽  
Frank Schlütz ◽  
...  

2010 ◽  
Vol 23 (23) ◽  
pp. 6234-6247 ◽  
Author(s):  
Tom Howard ◽  
Jason Lowe ◽  
Kevin Horsburgh

Abstract This paper describes numerical experiments using a climate–storm surge simulation system for the coast of the United Kingdom, with a particular focus on the southern North Sea and the Thames estuary in southeastern England. Time series of surges simulated in the southern North Sea by a surge model driven by atmospheric data from a regional climate model and surges simulated by the same surge model driven by atmospheric data from a global climate model are compared. A strong correspondence is demonstrated, and a linear scaling factor relating them is derived. This factor varies slowly with location. Around the Thames estuary, extreme surges are compared in the same way, and the linear scaling factor for the extremes is found to be similar to that for the full time series. The authors therefore assert that in seeking significant trends in surge at this location using this model arrangement, the regional model downscaling stage could be avoided, if observations were used to establish a suitable scaling factor for each location. The influence of the tide–surge phase relationship is investigated, and extreme sea levels at the mouth of the River Thames from regional-model-driven simulations are compared to the extreme event of 1953. Although the simulated levels are slightly lower, they are found to be comparable given the observational uncertainty. The assumption that time-mean sea level changes can be added linearly to surge changes is investigated at this location for large changes in time-mean sea level. The authors find that the primary effect of such an increase is on the speed of propagation of tide and surge, supporting the case for a simple linear addition of mean and extreme sea level changes.


2017 ◽  
Author(s):  
Timme Donders ◽  
Niels A. G. M. van Helmond ◽  
Roel Verreussel ◽  
Dirk Munsterman ◽  
Johan Ten Veen ◽  
...  

Abstract. We assess the disputed phase relations between forcing and climatic response in the Early Pleistocene with a spliced Gelasian (~ 2.6–1.8 Ma) multi-proxy record from the southern North Sea. The cored sections couple climate evolution on both land and sea during the onset of Northern Hemisphere Glaciations (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian Stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by Early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to Early Pleistocene glacial–interglacial cycles, and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high resolution reconstructions of relative Terrestrial and Sea Surface Temperature (TT and SST), vegetation, relative sea level, and coastal influence. During the prominent cold stages MIS 100, 98 and 96, the record indicates increased non-arboreal vegetation, and low SST and TT, and low relative sea level. During the warm stages MIS 99, 97 and 95 we infer freshwater influx increases causing stratification of the water column together with higher % arboreal vegetation, high SST and relative sea level maxima. The Early Pleistocene distinct warm–cold alterations are synchronous between land and sea, but lead the relative sea level change. The record provides evidence for a dominantly NH driven cooling and glacial build up which is obliquity driven. Timing of southward migration of Arctic surface water masses, indicated by relative SST, are furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth in order to identify lead-lags between forcing and response of Early Pleistocene glaciations.


1998 ◽  
Vol 17 (9-10) ◽  
pp. 901-911 ◽  
Author(s):  
Peter Kristensen ◽  
Karen Luise Knudsen ◽  
Hans Petter Sejrup

Sign in / Sign up

Export Citation Format

Share Document