Late Middle Pleistocene sea-level change in the southern North Sea: the record from eastern Essex, UK

1999 ◽  
Vol 55 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Helen M. Roe
2020 ◽  
Author(s):  
Natasha Barlow ◽  
Victor Cartelle ◽  
Oliver Pollard ◽  
Lauren Gregoire ◽  
Natalya Gomez ◽  
...  

<p>Current models that project sea-level rise beyond 2100 have large uncertainties because recent observation encompass a too limited range of climate variability to provide robust tests against which to simulate future changes. It is crucial to turn to the geological record where there are large-scale changes in climate, but the current interglacial provides limited evidence for how the Earth-system responds to increased temperatures, and therefore it is necessary to study previous climatically-warm periods. Global temperatures during the Last Interglacial were ~1<sup>o</sup>C warmer than pre-industrial values and 3-5<sup>o</sup>C warmer at polar latitudes, during which time global mean sea level was likely 6-9 m above present. Though the drivers of warming during the Last Interglacial are different to those of today, it is the amplified warming at polar latitudes, the primary locations of the terrestrial ice masses likely to contribute to long term sea-level rise, which makes the Last Interglacial an ideal palaeo-laboratory to understand coastal response to sea-level rise.  However, our understanding of Last Interglacial sea level change is primarily limited to tropical and sub-tropical latitudes and it is important to understand the response of temperate estuarine settings to rising sea level.</p><p>The ERC-funded RISeR project (Rates of Interglacial Sea-level Change, and Responses) focuses on specifically targeting palaeo shorelines buried within the southern North Sea, preserved beyond the limit of the Last Glacial Maximum ice sheets. Buried Last Interglacial sequences in this area provide a valuable record of marine transgression and are being unveiled in new geophysical and geotechnical datasets acquired to support the offshore renewable energy development. This offshore sedimentary archives offer significant advantages over the geomorphologically restricted onshore records allowing us to trace the transgression over a much large area, and should capture the earliest flooding of the Last Interglacial North Sea basin, when the far-field data suggests ice sheet melt was at it maximum. By integrating the already available datasets with newly acquired samples as part of the project, we aim to develop new palaeoenvironmental reconstructions of the Last Interglacial sea-level change from northwest Europe, providing the first chronological constraints on timing, and therefore rates. This has the potential to allow us to ‘fingerprint’ the source of melt (Greenland and/or Antarctica) during the interglacial sea-level highstand.</p>


Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


Sign in / Sign up

Export Citation Format

Share Document