soil development
Recently Published Documents


TOTAL DOCUMENTS

586
(FIVE YEARS 82)

H-INDEX

53
(FIVE YEARS 3)

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105968
Author(s):  
B. Woronko ◽  
Z. Zagórski ◽  
M. Cyglicki
Keyword(s):  

SOIL ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 1-15
Author(s):  
Zuzana Frkova ◽  
Chiara Pistocchi ◽  
Yuliya Vystavna ◽  
Katerina Capkova ◽  
Jiri Dolezal ◽  
...  

Abstract. At the early stages of pedogenesis, the dynamics of phosphorus (P) in soils are controlled by microbial communities, the physicochemical properties of the soil and the environmental conditions. While various microorganisms involved in carrying out biogeochemical processes have been identified, little is known about the actual contribution of microbial processes, such as organic P hydrolysis and microbial P turnover, to P cycling. We thus focused on processes driven by microbes and how they affect the size and cycling of organic and inorganic soil P pools along a soil chronosequence in the Chamser Kangri glacier forefield (Western Himalayas). The rapid retreat of the glacier allowed us to study the early stages of soil formation under a cold arid climate. Biological P transformations were studied with the help of the isotopic composition of oxygen (O) in phosphate (δ18OP) coupled to sequential P fractionation performed on soil samples (0–5 cm depth) from four sites of different age spanning 0 to 100–150 years. The P bound to Ca, i.e., 1 M HCl-extractable P, still represented 95 % of the total P stock after approximately 100 years of soil development. Its isotopic composition was similar to the parent material at the most developed site. Primary phosphate minerals, possibly apatite, mostly comprised this pool. The δ18OP of the available P and the NaOH-extractable inorganic P instead differed from that of the parent material, suggesting that these pools underwent biological turnover. The δ18OP of the available P was mostly controlled by the microbial P, suggesting fast exchanges occurred between these two pools possibly fostered by repeated freezing–thawing and drying–rewetting cycles. The release of P from organic P becomes increasingly important with soil age, constituting one-third of the P flux to available P at the oldest site. Accordingly, the lighter isotopic composition of the P bound to Fe and Al oxides at the oldest site indicated that this pool contained phosphate released by organic P mineralization. Compared to previous studies on early pedogenesis under alpine or cold climate, our findings suggest a much slower decrease of the P-bearing primary minerals during the first 100 years of soil development under extreme conditions. However, they provide evidence that, by driving short-term P dynamics, microbes play an important role in controlling the redistribution of primary P into inorganic and organic soil P pools.


2021 ◽  
Vol 3 ◽  
pp. 111-123
Author(s):  
Libuše Smolíková
Keyword(s):  


Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115378
Author(s):  
Corey R. Lawrence ◽  
Marjorie S. Schulz ◽  
Caroline A. Masiello ◽  
Oliver A. Chadwick ◽  
Jennifer W. Harden

2021 ◽  
Vol 18 (5) ◽  
pp. 476-487
Author(s):  
V. A. Nikolayev

Introduction. The unit of continuous action for the formation of the underlying layer is designed to increase labour productivity in the construction of roads and other objects, for the construction of which it is necessary to remove the upper layer of soil. For loosening of soil in the unit used bit-like working bodies. Often, disc working bodies are used to cut the soil. Therefore, the expediency of using passive discs in road-building technical means, in particular, in the unit of continuous action for the formation of the underlying layer of highways, is of practical interest. Despite the large number of works, a detailed analysis of the operation of passive disks was not made. Therefore, in order to compare the energy costs for cutting the soil with passive discs and chisel-shaped working bodies, it is necessary to make a theoretical analysis of the operation of passive disks. Analysis of the energy costs of the disk ripper cannot be carried out without having the approximate values of its geometric, kinematic and dynamic parameters.The method of research. As part of a continuous unit to form the underlying layer of roads, each disc would be clamped with soil on both sides and carried out clamped cutting. Therefore, a disk ripper is adopted for analysis, aggregated with a separate energy device. On the basis of the constructive layout, rational geometric parameters of the disk ripper are revealed. The method of calculation of its kinematic and dynamic parameters is developed. In particular, the method of determining the weighted average circumferental velocity of the disk, the angular velocity of the disk and the circumferental velocity of the point on the edge of the disk blade is considered. The modes of cutting the soil by various parts of the disk are considered.Results. On the basis of the developed technique, the dependence of the minimum diameter of the disk on the depth of soil development was revealed. The moment of resistance of the soil to the rotation of the disks is calculated. The horizontal and vertical component of soil resistance to the front disc carrying out clamped cutting and subsequent discs carrying out semi-clamped cutting of the soil are determined. The necessary thrust force of the energy device for cutting the soil with a disk ripper and the dependence of the thrust force of the energy device for cutting the soil on the depth of soil development were revealed. The performance of the unit, including the power device and the disk ripper, is calculated.Conclusion. Since as part of the unit of continuous action for the formation of the underlying layer of roads, the disks will carry out clamped cutting of the soil, for preliminary loosening of the soil with disks, it is more expedient to use a separate unit, including an energy device and a disk ripper. On the basis of the theoretical studies carried out, the necessary thrust force of the energy device for cutting the soil and the total traction force necessary to move the disc ripper were revealed. The performance of the unit is calculated. To compare the energy costs for cutting the soil with passive discs and chisel-shaped working bodies, it is necessary to make a theoretical analysis of the energy costs for the operation of passive disks.


2021 ◽  
Author(s):  
W. Marijn van der Meij

Abstract. Soils and landscapes can show complex, non-linear evolution, especially under changing climate or land use. Soil-landscape evolution models (SLEMs) are increasingly equipped to simulate the development of soils and landscapes over long timescales under these changing drivers, but provide large data output that can be difficult to interpret and communicate. New tools are required to analyse and communicate large model output. In this work, I show how spatial and temporal trends in previously published model results can be summarized and conceptualized with evolutionary pathways, which are possible trajectories of the development of soil patterns. Simulated differences in rainfall and land use control progressive or regressive soil development and convergence or divergence of the soil pattern. These changes are illustrated with real-world examples of soil development and soil complexity. The use of evolutionary pathways for analysing the results of SLEMs is not limited to the examples in this paper, but they can be used on a wide variety of soil properties, soil pattern statistics and models. With that, evolutionary pathways provide a promising tool to analyse and communicate soil model output, not only for studying past changes in soils, but also for evaluating future spatial and temporal effects of soil management practices in the context of sustainability.


2021 ◽  
Author(s):  
Moritz Mainka ◽  
Laura Summerauer ◽  
Daniel Wasner ◽  
Gina Garland ◽  
Marco Griepentrog ◽  
...  

Abstract. A central question in carbon research is how stabilization mechanisms in soil change over time with soil development and how this is reflected in qualitative changes of soil organic matter (SOM). To address this matter, we assessed the influence of soil geochemistry on bulk SOM composition along a soil chronosequence in California, USA spanning 3 million years. This was done by combining data on soil mineralogy and texture from previous studies with additional measurements on total carbon (C), stable isotope values (δ13C and δ15N), and spectral information derived from Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS). To assess qualitative shifts in bulk SOM, we analysed the peak areas of simple plant-derived (S-POM), complex plant-derived (C-POM), and predominantly microbially derived OM (MOM) and their changes in abundance across soils varying several millennia to millions of years in weathering and soil development. We observed that SOM became increasingly stabilized and microbially-derived (lower C : N ratio, increasing δ13C and δ15N) as soil weathering progresses. Peak areas of S-POM (i.e. aliphatic root exudates) did not change over time, while peak areas of C-POM (lignin) and MOM (components of microbial cell walls (amides, quinones, and ketones)) increased over time and depth and were closely related to clay content and pedogenic iron oxides. Hence, our study suggests that with progressing soil development, SOM composition co-varies with changes in the mineral matrix. Our study indicates that a discrimination in favour of structurally more complex OM compounds (C-POM, MOM) gains importance as the mineral soil matrix becomes increasingly weathered.


Geoderma ◽  
2021 ◽  
Vol 401 ◽  
pp. 115328
Author(s):  
Zoltán Szalai ◽  
Marianna Ringer ◽  
Tibor Németh ◽  
Péter Sipos ◽  
Katalin Perényi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document