LONG-TERM LAND USE INFLUENCES SOIL MICROBIAL BIOMASS P AND S, PHOSPHATASE AND ARYLSULFATASE ACTIVITIES, AND S MINERALIZATION IN A BRAZILIAN OXISOL

2013 ◽  
Vol 25 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Elcio L. Balota ◽  
Ines F. Yada ◽  
Higo Amaral ◽  
Andre S. Nakatani ◽  
Richard P. Dick ◽  
...  
2021 ◽  
Vol 30 (5) ◽  
pp. 1056-1069
Author(s):  
Xiaohua Wan ◽  
Xinli Chen ◽  
Zhiqun Huang ◽  
Han Y. H. Chen

2019 ◽  
Vol 242 ◽  
pp. 1-10 ◽  
Author(s):  
Shashank Tiwari ◽  
Chhatarpal Singh ◽  
Siddharth Boudh ◽  
Pradeep Kumar Rai ◽  
Vijai Kumar Gupta ◽  
...  

2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


2012 ◽  
Vol 367 (1-2) ◽  
pp. 225-234 ◽  
Author(s):  
Benjamin L. Turner ◽  
Hans Lambers ◽  
Leo M. Condron ◽  
Michael D. Cramer ◽  
Jonathan R. Leake ◽  
...  

2020 ◽  
Author(s):  
Maria Udovenko ◽  
Vusal Guliyev ◽  
Evgenia Blagodatskaya

&lt;p&gt;Soil microbiota ensuring sustainable functioning of terrestrial ecosystems is strongly dependent on climatic conditions and vegetation type. Even within the same climatic zone, active land use alters the size, structure and functioning of the microbial community. We hypothesized that land use effect on soil microbial biomass will be more pronounced under impact of global warming. We also tested whether the biomass of specific microbial group (e.g., fungi) is more sensitive to environmental changes than total microbial biomass.&lt;/p&gt;&lt;p&gt;We proved these hypotheses in the experiments based on Global Change Experimental Facility platform, located at the field research station of the Helmholtz-Centre for Environmental Research in Bad Lauchst&amp;#228;dt near Halle, Saxon-Anhalt, Germany. Experimental setup included 50 plots, located in 10 blocks (5 plots per block). Five blocks are under ambient climate and the rest 5 blocks are subjected to a realistic climate change treatment (under conditions predicted by several models of climate change in Central Germany for 2050&amp;#8211;2080 period). Five land use types were established in every block: conventional farming; organic farming; intensively used meadow, extensively used meadow and extensively used pasture. We determined soil microbial biomass and its fungal component by chloroform fumigation-extraction method and by ergosterol content, respectively. We found that fungal biomass was more sensitive to intensive land use for crop production than to climate change. The possible mechanisms of such a sensitivity will be discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document