soil microbial biomass
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 195)

H-INDEX

92
(FIVE YEARS 8)

2022 ◽  
Vol 325 ◽  
pp. 107718
Author(s):  
Teal S. Potter ◽  
Léa Vereecke ◽  
Richard A. Lankau ◽  
Gregg R. Sanford ◽  
Erin M. Silva ◽  
...  

Author(s):  
Speranza Claudia Panico ◽  
Valeria Memoli ◽  
Lucia Santorufo ◽  
Stefania Aiello ◽  
Rossella Barile ◽  
...  

The knowledge of the effects of fire on soil properties is of particular concern in Mediterranean areas, where the effects of vegetation type are still scarce also. This research aimed: to assess the properties of burnt soils under different vegetation types; to highlight the soil abiotic properties driving the soil microbial biomass and activity under each vegetation type; to compare the biological response in unburnt and burnt soils under the same vegetation type, and between unburnt and burnt soils under different vegetation types. The soils were collected at a Mediterranean area where a large wildfire caused a 50% loss of the previous vegetation types (holm oak: HO, pine: P, black locust: BL, and herbs: H), and were characterized by abiotic (pH, water, and organic matter contents; N concentrations; and C/N ratios) and biotic (microbial and fungal biomasses, microbial respiration, soil metabolic quotient, and hydrolase and dehydrogenase activities) properties. The biological response was evaluated by the Integrative Biological Responses (IBR) index. Before the fire, organic matter and N contents were significantly higher in P than H soils. After the fire, significant increases of pH, organic matter, C/N ratio, microbial biomass and respiration, and hydrolase and dehydrogenase activities were observed in all the soils, especially under HO. In conclusion, the post-fire soil conditions were less favorable for microorganisms, as the IBR index decreased when compared to the pre-fire conditions.


2022 ◽  
Author(s):  
Chelsea J Carey ◽  
Hayley Strohm ◽  
Ford Smith ◽  
Mark Biaggi

There is increasing interest in using biostimulant products, such as microbial inoculants and humic substances, to help manage rangelands regeneratively. Understanding how plant and soil communities on rangelands respond to these products is therefore important. In this study, we examined the combined effects of a commercial inoculant and humic product that are currently on the market, and asked whether they influenced rangeland forage productivity and quality, soil microbial biomass and community composition, and abiotic soil parameters in Central Coastal California. We found that forage productivity and some metrics of forage quality responded positively to the foliar application of a commercial microbial inoculant and humic product, but that these benefits were not mirrored by changes belowground in the microbial community or abiotic parameters. Depending on the goals of using the products, this could be seen as a winning scenario and suggests microbial inoculants and humic products could warrant attention as a potential tool for regenerative stewardship of rangelands. While our study derives from one ranch and therefore requires confirmation of its ubiquity prior to broadscale adoption, our results provide new insights into the usefulness of this approach for managing rangeland productivity in California's Central Coast.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mukesh Kumar Soothar ◽  
Abdoul Kader Mounkaila Hamani ◽  
Muhammad Fahad Sardar ◽  
Mahendar Kumar Sootahar ◽  
Yuanyuan Fu ◽  
...  

Biochar has extensively been used for multiple purposes in agriculture, including improving soil microbial biomass. The current study aimed to investigate the effect of acidic biochar on maize seedlings’ rhizosphere bacterial abundance under salinity. There were seven treatments and three replicates in a controlled greenhouse coded as B0S1, B1S1, and B2S1 and B0S2, B1S2, and B2S2. CK is control (free of biochar and salt); B0, B1, and B2 are 0, 15, and 30 g biochar (kg soil)–1; and S1 and S2 are 2.5 and 5 g salt pot–1 that were amended, respectively. After harvesting the maize seedlings, the soil samples were collected and analyzed for soil microbial biomass, bacterial abundance, and diversity. The results revealed that relative abundance of Proteobacteria, Actinobacteria, and Chloroflexi increased on phylum level, whereas Actinomarinales, Alphaproteobacteria, and Streptomyces enhanced on genus level, respectively, in B2S1 and B2S2, when compared with CK and non-biochar amended soil under saline conditions. The relative abundance of Actinomarinales was positively correlated with total potassium (TK) and Gematimonadetes negatively correlated with total phosphorus (TP). Biochar addition slightly altered the Ace1, Chao1, and alpha diversity. Principal component analysis corresponded to the changes in soil bacterial community that were closely associated with biochar when compared with CK and salt-treated soils. In conclusion, acidic biochar showed an improved soil microbial community under salinity.


Author(s):  
Lin Wang ◽  
Mandeep Kaur ◽  
Ping Zhang ◽  
Ji Li ◽  
Ming Xu

Soil quality is directly affected by alterations in its microbiological, biological, biochemical, physical, and chemical aspects. The microbiological activities of soil can affect soil fertility and plant growth because it can speed up the cycling of nutrients, enzymes, and hormones that are needed by plants for proper growth and development. The use of different agricultural management practices can influence microbial biomass and enzyme activities by altering soil microclimate, soil microorganism habitat, and nutrient cycling. Based on this, the present work planned to evaluate the impact of conventional, low-input, and organic farming systems in a vegetable field growing celery on microbial biomass and different soil enzyme activities. The present study showed a comparison of the effect of different practices on biological soil quality indicators during two sampling times, i.e., one month after colonization and one month before harvesting. It was observed that the soil microbial biomass in the organic farming system was significantly higher than that found in conventional and low-input practices. Under an organic farming system, the soil microbial biomass in December was significantly higher than that in October. The soil microbial biomass carbon in the 0–20 cm soil layer showed higher variation compared to that in the 20–40 cm layer for all the three of the farming management practices that were used in the study. Additionally, the soil total carbon and total organic carbon were recorded as being higher in the December samples than they were in the October samples. Under all the three of the management practices that were applied, the soil catalase activity was higher in the October samples than it was in the December soil samples that were collected the from 20–40 cm soil layer compared to those that were taken from the 0–20 cm layer. The application of organic fertilizer (chicken and cowmanure compost) resulted inincreases in the soil urease and in the protease activity. The protease activity of the soil samples that were extracted from the 0–20 cm and 20–40 cm soil layers in October was higher in the samples that were taken from farms using conventional practices than it was in the samples that were taken from farms using organic and low-input practices, while the samples that were collected during December from both of the soil layers showed higher protease activity when organic methods had been used. No significant variation in the soil urease activity was observed between the two soil layer samples. Urease activity was the highest when organic management practices were being used, followed by the low-input and the conventional modes. For the conventional and low-input practices, the soil urease activity showed an obvious trend of change that was related to thetime of sampling, i.e., activity in December was significantly higher than activity in October. The novelty of this study was to determine the microbial biomass carbon and enzymatic activity in a six-field crop rotation (tomato, cucumber, celery, fennel, cauliflower, and eggplant) using three management practices: low-input, conventional, and organic systems. The present study showed that the long-term application of organic fertilizers plays a large role in maintaining excellent microbial and enzyme activitythat result in improved soil quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jihui Fan ◽  
Tianyuan Liu ◽  
Ying Liao ◽  
Yiying Li ◽  
Yan Yan ◽  
...  

The biogeographic characteristics of soil microbial biomass stoichiometry homeostasis and also its mechanisms are commonly thought to be key factors for the survival strategies and resource utilization of soil microbes under extreme habitat. In this work, we conducted a 5,000-km transect filed survey in alpine grassland across Qinghai–Tibet Plateau in 2015 to measure soil microbial biomass carbon (MBC) and nitrogen (MBN) across alpine steppe and meadow. Based on the differences of climate and soil conditions between alpine steppe and meadow, the variation coefficient was calculated to investigate the homeostatic degree of MBC to MBN. Furthermore, the “trade-off” model was utilized to deeply distinguish the homeostasis degree of MBC/MBN between alpine steppe and meadow, and the regression analysis was used to explore the variability of trade-off in response to environmental factors in the alpine grassland. The results showed that the coefficient of variation (CV) of MBC/MBN in alpine meadow (CV = 0.4) was lower than alpine steppe (CV = 0.7). According to the trade-off model, microbial turnover activity of soil N relative to soil C increased rapidly and then decreased slightly with soil organic carbon (SOC), soil total nitrogen (STN), and soil water content across alpine meadow. Nevertheless, in alpine steppe, SOC/STN had a positive effect on microbial turnover of soil N. These results suggested that water, heat, and soil nutrients availability were the key factors affecting the C:N stoichiometry homeostasis of soil microbial biomass in Qinghai–Tibet Plateau (QTP)’s alpine grassland. Since the difference of survival strategy of the trade-off demands between soil C and N resulting in different patterns and mechanism, the stoichiometry homeostasis of soil microbial biomass was more stable in alpine meadow than in alpine steppe.


Sign in / Sign up

Export Citation Format

Share Document