Carbon stock assessment and soil carbon management in agricultural land-uses in Thailand

2008 ◽  
Vol 19 (3) ◽  
pp. 242-256 ◽  
Author(s):  
N. Gnanavelrajah ◽  
R. P. Shrestha ◽  
D. Schmidt-Vogt ◽  
L. Samarakoon
2017 ◽  
Vol 10 ◽  
pp. 138-143 ◽  
Author(s):  
Tatiana F. Rittl ◽  
Daniele Oliveira ◽  
Carlos E.P. Cerri

2021 ◽  
Vol 13 (2) ◽  
pp. 723-728
Author(s):  
Chowlani Manpoong ◽  
Wapongnungsang ◽  
S. K. Tripathi

Soil carbon is one of the most affected variables to land-use change in tropics. The soil carbon flux plays a major role in regulating microbial activities and nutrient distribution in soil. This study aimed to evaluate the soil carbon stock in various land uses at different depths in the hilly terrain of Mizoram, Northeast India. Soil samples at 0-10 cm, 10-20 cm and 20-30 cm soil depths were collected from Rubber plantation (RP), Oil palm plantation (OPP), Teak plantation (TP), Bamboo Forest (BF), 5 years fallow (5YF), 10 years fallow (10YF), Tephrosia candida plantation (TCP), Horticulture garden (HORT), Homegarden (HG) and Natural forest (NF). Soil carbon stock varied significantly (p <0.05) across the land uses and depths. The soil under Tephrosia candida stand had significantly (p <0.05) higher values of C stock (73.66 Mg ha-1) which may be due to high biomass, dense vegetative cover and high C in root exudates. The minimum C stock estimated in Horticulture garden (43.28 Mg ha-1) is probably due to reduced soil organic matter. Soil carbon stock in Homegarden, Teak plantation, Bamboo forest and Rubber plantation ranged from 46.82 Mg ha-1 to 59.34 Mg ha-1 whereas 5 years and 10 years fallow land, Natural forest and Oil palm plantation ranged from 61.35 Mg ha-1 to 73.35 Mg ha-1. The study indicated that the land use change in the mountainous region significantly affected the carbon stock in the soil. A proper land use management strategies to increase the soil organic matter is recommended to enhance the carbon stock in this region.


Soil Research ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 680 ◽  
Author(s):  
Karen W. Holmes ◽  
Andrew Wherrett ◽  
Adrian Keating ◽  
Daniel V. Murphy

Estimation of soil organic carbon stocks requires bulk density (BD) measurements. Variability in BD contributes to carbon stock uncertainty, in turn affecting how large a change in stock can be observed over time or space. However, BD is difficult and time-consuming to measure, and sample collection is further complicated by extremely dry field conditions, coarse-textured soils, and high coarse-fragment content, which are common in southern Australia and other semi-arid and Mediterranean-type climates. Two alternatives to reduce BD sampling effort are to take fewer BD samples at a site (i.e. volumetric rings or clod), and to use more time-efficient methods (i.e. gamma–neutron density meter, NDM). We evaluate these options in the context of a soil carbon stock survey in agricultural land in the south-west of Australia. The BD values within a monitoring site measured with conventional and NDM methods were statistically different when assessed using large sample sizes; the measurements diverged where the coarse fraction volume was >20%. However, carbon stocks were equivalent, reflecting the much larger relative variability in carbon percentage, which contributed 84–99% of the uncertainty in carbon stocks compared with <5% from BD. Given the maximum variability measured, soil carbon stock changes in southern Australia should be monitored on a decadal scale.


2011 ◽  
Vol 48 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Tommaso Chiti ◽  
Lorenzo Gardin ◽  
Lucia Perugini ◽  
Roberta Quaratino ◽  
Francesco Primo Vaccari ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Garima Sharma ◽  
L. K. Sharma ◽  
K. C. Sharma

Abstract Background Land use change plays a vital role in global carbon dynamics. Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing carbon emission. Therefore, the objective of our study was to determine land use change and to assess its effect on soil carbon stock in semi-arid part of Rajasthan, India. Landsat temporal satellite data of Pushkar valley region of Rajasthan acquired on 1993, 2003, and 2014 were analyzed to assess land use change. Internal trading of land use was depicted through matrices. Soil organic carbon (SOC) stock was calculated for soil to a depth of 30 cm in each land use type in 2014 using field data collection. The SOC stock for previous years was estimated using stock change factor. The effect of land use change on SOC stock was determined by calculating change in SOC stock (t/ha) by deducting the base-year SOC stock from the final year stock of a particular land use conversion. Results The total area under agricultural lands was increased by 32.14% while that under forest was decreased by 23.14% during the time period of 1993–2014. Overall land use change shows that in both the periods (1993–2003 and 2003–2014), 7% of forest area was converted to agricultural land and about 15% changes occurred among agricultural land. In 1993–2003, changes among agricultural land led to maximum loss of soil carbon, i.e., 4.88 Mt C and during 2003–2014, conversion of forest to agricultural land led to loss in 3.16 Mt C. Conclusion There was a continuous decrease in forest area and increase in cultivated area in each time period. Land use change led to alteration in carbon equity in soil due to change or loss in vegetation. Overall, we can conclude that the internal trading of land use area during the 10-year period (1993–2003) led to net loss of SOC stock by 8.29 Mt C. Similarly, land use change during 11-year period (2003–2014) caused net loss of SOC by 2.76 Mt C. Efforts should be made to implement proper land use management practices to enhance the SOC content.


2016 ◽  
Vol 80 (5) ◽  
pp. 1411-1423 ◽  
Author(s):  
Jeffrey P. Beem-Miller ◽  
Angela Y.Y. Kong ◽  
Stephen Ogle ◽  
David Wolfe

Author(s):  
Telmo José Mendes ◽  
Diego Silva Siqueira ◽  
Eduardo Barretto de Figueiredo ◽  
Ricardo de Oliveira Bordonal ◽  
Mara Regina Moitinho ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


Sign in / Sign up

Export Citation Format

Share Document