Stabilisation of hydrogen bonding in polypropylene glycol at EHL contact region

2010 ◽  
Vol 22 (9) ◽  
pp. 367-376 ◽  
Author(s):  
Koji Takiwatari ◽  
Hidetaka Nanao ◽  
Eiichi Suzuki ◽  
Shigeyuki Mori
2011 ◽  
Vol 418-420 ◽  
pp. 13-17
Author(s):  
Su Ran Liao ◽  
Yuan Wei ◽  
Yu Qi Zhang ◽  
Meng Zhang ◽  
Gao Fei Feng

The study of polyurethanes are of continuing interest due to their excellent physical properties. In this study, the reaction kinetics and polymerization conditions in two-step process of toluene diisocyante (TDI) and polypropylene glycol (PPG) with organo-tin mixed catalyst were investigated by di-n-butylamine back-titration. It was showed that the reaction obeyed the second-order equation of step-growth polymerization, the rate constants of TDI and PPG reaction at 50, 60 and 70°C were 0.0922, 0.3373 and 0.5828 kg•mol-1•min-1,respectively. The activation energy obtained from the result was 71.63 kJ•mol-1. The number average molecular weight (Mn) and molecular-weight distribution (Mw/Mn) of the polyurethane were 45175 and 1.53, respectively, and the content of hydrogen bonding in the N-H group from Fourier transform infrared spectrum (FTIR) was 80.75%, which manifested that the large amount of N-H were present in hydrogen bonding.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2887 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes usingin vivoandin vitroexperiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2017 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types, HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2020 ◽  
Vol 117 (25) ◽  
pp. 13967-13974 ◽  
Author(s):  
Yingjie Wang ◽  
Meiyi Liu ◽  
Jiali Gao

Molecular dynamics and free energy simulations have been carried out to elucidate the structural origin of differential protein–protein interactions between the common receptor protein angiotensin converting enzyme 2 (ACE2) and the receptor binding domains of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [A. E. Gorbalenyaet al.,Nat. Microbiol.5, 536–544 (2020)] that causes coronavirus disease 2019 (COVID-19) [P. Zhouet al.,Nature579, 270–273 (2020)] and the SARS coronavirus in the 2002–2003 (SARS-CoV) [T. Kuikenet al., Lancet 362, 263–270 (2003)] outbreak. Analysis of the dynamic trajectories reveals that the binding interface consists of a primarily hydrophobic region and a delicate hydrogen-bonding network in the 2019 novel coronavirus. A key mutation from a hydrophobic residue in the SARS-CoV sequence to Lys417 in SARS-CoV-2 creates a salt bridge across the central hydrophobic contact region, which along with polar residue mutations results in greater electrostatic complementarity than that of the SARS-CoV complex. Furthermore, both electrostatic effects and enhanced hydrophobic packing due to removal of four out of five proline residues in a short 12-residue loop lead to conformation shift toward a more tilted binding groove in the complex in comparison with the SARS-CoV complex. On the other hand, hydrophobic contacts in the complex of the SARS-CoV–neutralizing antibody 80R are disrupted in the SARS-CoV-2 homology complex model, which is attributed to failure of recognition of SARS-CoV-2 by 80R.


2017 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types, HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. Weitkamp, J. Neuefeind, H. E. Fisch

1968 ◽  
Vol 65 ◽  
pp. 1587-1589 ◽  
Author(s):  
Bithika Ghosh ◽  
Sadhan Basu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document