Hydrogen bonding in liquid methanol at ambient conditions and at high pressure

2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. Weitkamp, J. Neuefeind, H. E. Fisch
2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. WEITKAMP ◽  
J. NEUEFEIND ◽  
H. E. FISCHER ◽  
M. D. ZEIDLER

2013 ◽  
Vol 110 (14) ◽  
pp. 5321-5325 ◽  
Author(s):  
H. Xiao ◽  
Q. An ◽  
W. A. Goddard ◽  
W.-G. Liu ◽  
S. V. Zybin

Author(s):  
Tomasz Poreba ◽  
Gaston Garbarino ◽  
Davide Comboni ◽  
Mohamed Mezouar

Dicaesium octaiodide is composed of layers of zigzag polyiodide units (I8 2−) intercalated with caesium cations. Each I8 2− unit is built of two triiodides bridged with one diiodine molecules. This system was subjected to compression up to 5.9 GPa under hydrostatic conditions. Pressure alters the supramolecular architecture around I8 2−, leading to bending of the triiodide units away from their energetically preferred geometry (D ∞h). Short I2...I3 − contacts compress significantly, reaching lengths typical for the covalently bonded polyiodides. Unlike in reported structures at ambient conditions, pressure-induced catenation proceeds without symmetrization of the polyiodides, pointing to a different electron-transfer mechanism. The structure is shown to be half as compressible [B0 = 12.9 (4) GPa] than the similar CsI3 structure. The high bulk modulus is associated with higher I—I connectivity and a more compact cationic net, than in CsI3. The small discontinuity in the compressibility trend around 3 GPa suggests formation of more covalent I—I bonds. The potential sources of this discontinuity and its implication on the electronic properties of Cs2I8 are discussed.


2000 ◽  
Vol 27 (4) ◽  
pp. 225-233 ◽  
Author(s):  
H. Kagi ◽  
J. B. Parise ◽  
H. Cho ◽  
G. R. Rossman ◽  
J. S. Loveday

2014 ◽  
Vol 92 (7) ◽  
pp. 616-624 ◽  
Author(s):  
Zhichao Liu ◽  
Qiong Wu ◽  
Weihua Zhu ◽  
Heming Xiao

Density functional theory was used to study the structural, electronic, and optical properties of crystalline 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo-[5.5.0.05,903,11]-dodecane (TEX) under hydrostatic pressure. The results indicate that there is a displacive transition in TEX under compression that has never been found in experiments. As the pressure increases, the band gap gradually decreases but presents an abnormal increase at 61 GPa, called the structural transition; moreover, the gap reduction is more pronounced in the low-pressure range compared with the high-pressure range. An analysis of density of states shows that the electronic delocalization in TEX is enhanced gradually under the influence of pressure. The peaks of the imaginary parts of the dielectric functions, energy-loss function, and reflectivity may come mainly from the electron transitions between the oxygen 2p and nitrogen 2p states. The electron energy-loss function presents a blue shift under compression. TEX has relatively higher optical activity at high pressure than at ambient conditions.


2021 ◽  
pp. 2150386
Author(s):  
Shifeng Niu ◽  
Ran Liu ◽  
Xuhan Shi ◽  
Zhen Yao ◽  
Bingbing Liu ◽  
...  

The structural evolutionary behaviors of AgN3 have been studied by using the particle swarm optimization structure search method combined with the density functional theory. One stable high-pressure metal polymeric phase with the [Formula: see text] space group is suggested. The enthalpy difference analysis indicates that the Ibam-AgN3 phase will transfer to the I4/mcm-AgN3 phase at 4.7 GPa and then to the [Formula: see text]-AgN3 phase at 24 GPa. The [Formula: see text]-AgN3 structure is composed of armchair–antiarmchair N-chain, in which all the N atoms are sp2 hybridization. The inherent stability of the armchair–antiarmchair chain and the anion–cation interaction between the N-chain and Ag atom induce a high stability of the [Formula: see text]-AgN3 phase, which can be captured at ambient conditions and hold its stable structure up to 1400 K. The exhibited high energy density (1.88 KJ/g) and prominent detonation properties ([Formula: see text] Km/s; [Formula: see text] GPa) of the [Formula: see text]-AgN3 phase make it a potentially high energy density material.


Author(s):  
Naveed Zafar Ali ◽  
Branton J. Campbell ◽  
Martin Jansen

CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4 tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation (α → β) at 100 K, which corresponds to a structural relaxation with concurrent tilting and breathing modes of edge-sharing CoO4 tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity of the tetrahedra. At 923 K and 2 GPa, β-CsCoO2 undergoes a first-order phase transition to a new quenchable high-pressure polymorph, γ-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powder diffraction data, the new high-pressure polymorph γ-CsCoO2 crystallizes in the tetragonal space group I41/amd:2 (Z = 4) with the lattice constants a = 5.8711 (1) and c = 8.3214 (2) Å, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure β-CsCoO2 polymorph. The pressure-induced transition (β → γ) is reversible; γ-CsCoO2 stays metastable under ambient conditions, but transforms back to the β-CsCoO2 structure upon heating to 573 K. The transformation pathway revealed is remarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry of their common subgroup Pb21 a (alternative setting of space group No. 29 that matches the conventional β-phase cell).


Sign in / Sign up

Export Citation Format

Share Document