hydrophobic region
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 59)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Vol 6 (4) ◽  
pp. 306-309
Author(s):  
Sarvesh Datta Dixit ◽  
Shalini Singh

Carbonic anhydrases, hCAs IX and XII are applied as the markers of progression of the disease in many oxygen deficient tumours and their specially manoeuvred inhibition is directly related to containing the growth of both primary tumours and tumour growth of secondary nature. Ligand-based quantitative structure-activity relationship (QSAR) studies were carried out on curcumin related, sulphonamide derivatives as inhibitors of human trans-membrane carbonic anhydrase isozyme, hCA IX by comparative molecular field similarity analysis (CoMSIA) implemented through the SYBYL package. The capacity of the model to predict coveted compound was evaluated using test set of three compounds. The best model created was found to be of choice as it showed a r2 value of 0.811 and a cross validated coefficient q2 value of 0.617 in tripos CoMSIA hydrophobic region. Results of the present study indicated that hydrophobic region factors play an important role in carbonic anhydrase hCA IX inhibition for compounds.


2021 ◽  
Author(s):  
Zoë Adams ◽  
Erika Olson ◽  
Zhengwen Lian ◽  
Audrey Kim ◽  
Matthew Holcomb ◽  
...  

The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the “transparent window” region of the biomolecular IR spectrum. Carbon-deuterium (C-D) bonds are especially compelling transparent window probes since they are non-perturbative, can be readily introduced site selectively into peptides and proteins, and their stretch frequencies are sensitive to changes in the local molecular environment. Importantly, IR spectroscopy can be applied to a wide range of molecular samples regardless of solubility or physical state, making it an ideal technique for addressing the solubility challenges presented by self-assembling molecules. Here, we present the first continuous observation of transparent window probes following stopped-flow initiation. To demonstrate utility in a self-assembling system, we selected the MAX1 peptide hydrogel, a biocompatible material that has significant promise for use in tissue regeneration and drug delivery. C-D labeled valine was synthetically introduced into five distinct positions of the twenty-residue MAX1 β-hairpin peptide. Consistent with current structural models, steady-state IR absorption frequencies and linewidths of C-D bonds at all labeled positions indicate that these side chains occupy a hydrophobic region of the hydrogel and that the motion of side chains located in the middle of the hairpin is more restricted than those located on the hairpin ends. Following a rapid change in ionic strength to initiate gelation, the peptide absorption spectra were monitored as function of time, allowing determination of site-specific time constants. We find that within the experimental resolution, MAX1 gelation occurs as a cooperative process. These studies suggest that stopped-flow transparent window FTIR can be extended to other time-resolved applications, such as protein folding and enzyme kinetics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carlo Guardiani ◽  
Delia Sun ◽  
Alberto Giacomello

CRAC channel is ubiquitous and its importance in the regulation of the immune system is testified by the severe immunodeficiencies caused by its mutations. In this work we took advantage of the availability of open and closed structures of this channel to run for the first time simulations of the whole gating process reaching the relevant time-scale with an enhanced sampling technique, Targeted Molecular Dynamics. Our simulations highlighted a complex allosteric propagation of the conformational change from peripheral helices, where the activator STIM1 binds, to the central pore helices. In agreement with mutagenesis data, our simulations revealed the key role of residue H206 whose displacement creates an empty space behind the hydrophobic region of the pore, thus releasing a steric brake and allowing the opening of the channel. Conversely, the process of pore closing culminates with the formation of a bubble that occludes the pore even in the absence of steric block. This mechanism, known as “hydrophobic gating”, has been observed in an increasing number of biological ion channels and also in artificial nanopores. Our study therefore shows promise not only to better understand the molecular origin of diseases caused by disrupted calcium signaling, but also to clarify the mode of action of hydrophobically gated ion channels, possibly even suggesting strategies for the biomimetic design of synthetic nanopores.


2021 ◽  
Author(s):  
Linda X Phan ◽  
Charlotte I Lynch ◽  
Jason Crain ◽  
Mark Sansom ◽  
Stephen J Tucker

Interactions between ions and water at hydrophobic interfaces within ion channels and nanopores are suggested to play a key role in the movement of ions across biological membranes. Previous molecular dynamics (MD) simulations have shown that the affinity of polarizable anions to aqueous/hydrophobic interfaces can be markedly influenced by including polarization effects through an electronic continuum correction (ECC). Here, we designed a model biomimetic nanopore to imitate the polar pore openings and hydrophobic gating regions found in pentameric ligand-gated ion channels. MD simulations were then performed using both a non-polarizable force field and the ECC method to investigate the behavior of water, Na+ and Cl- ions confined within the hydrophobic region of the nanopore. Number density distributions revealed preferential Cl- adsorption to the hydrophobic pore walls, with this interfacial layer largely devoid of Na+. Free energy profiles for Na+ and Cl- permeating the pore also display an energy barrier reduction associated with the localization of Cl- to this hydrophobic interface, and the hydration number profiles reflect a corresponding reduction in the first hydration shell of Cl-. Crucially, these ion effects were only observed through inclusion of effective polarization which therefore suggests that polarizability may be essential for an accurate description for the behavior of ions and water within hydrophobic nanoscale pores, especially those that conduct Cl-.


2021 ◽  
Vol 14 (12) ◽  
pp. 1290
Author(s):  
Karishma K. Mashelkar ◽  
Woong Sub Byun ◽  
Hyejin Ko ◽  
Kisu Sung ◽  
Sushil K. Tripathi ◽  
...  

The development of anticancer drugs remains challenging owing to the potential for drug resistance. The simultaneous inhibition of multiple targets involved in cancer could overcome resistance, and these agents would exhibit higher potency than single-target inhibitors. Protein kinases represent a promising target for the development of anticancer agents. As most multi-kinase inhibitors are heterocycles occupying only the hinge and hydrophobic region in the ATP binding site, we aimed to design multi-kinase inhibitors that would occupy the ribose pocket, along with the hinge and hydrophobic region, based on ATP-kinase interactions. Herein, we report the discovery of a novel 4′-thionucleoside template as a multi-kinase inhibitor with potent anticancer activity. The in vitro evaluation revealed a lead 1g (7-acetylene-7-deaza-4′-thioadenosine) with potent anticancer activity, and marked inhibition of TRKA, CK1δ, and DYRK1A/1B kinases in the kinome scan assay. We believe that these findings will pave the way for developing anticancer drugs.


2021 ◽  
Vol 22 (24) ◽  
pp. 13253
Author(s):  
Alejandra E. Ramirez ◽  
Eduardo J. Fernández-Pérez ◽  
Nicol Olivos ◽  
Carlos F. Burgos ◽  
Subramanian Boopathi ◽  
...  

α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson’s Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aβ) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jéssica de O. Araújo ◽  
Silvana Pinheiro ◽  
William J. Zamora ◽  
Cláudio Nahum Alves ◽  
Jerônimo Lameira ◽  
...  

AbstractIn SARS-CoV-2 replication complex, the Non-structural protein 9 (Nsp9) is an important RNA binding subunit in the RNA-synthesizing machinery. The dimeric forms of coronavirus Nsp9 increase their nucleic acid binding affinity and the N-finger motif appears to play a critical role in dimerization. Here, we present a structural, lipophilic and energetic study about the Nsp9 dimer of SARS-CoV-2 through computational methods that complement hydrophobicity scales of amino acids with molecular dynamics simulations. Additionally, we presented a virtual N-finger mutation to investigate whether this motif contributes to dimer stability. The results reveal for the native dimer that the N-finger contributes favorably through hydrogen bond interactions and two amino acids bellowing to the hydrophobic region, Leu45 and Leu106, are crucial in the formation of the cavity for potential drug binding. On the other hand, Gly100 and Gly104, are responsible for stabilizing the α-helices and making the dimer interface remain stable in both, native and mutant (without N-finger motif) systems. Besides, clustering results for the native dimer showed accessible cavities to drugs. In addition, the energetic and lipophilic analysis reveal that the higher binding energy in the native dimer can be deduced since it is more lipophilic than the mutant one, increasing non-polar interactions, which is in line with the result of MM-GBSA and SIE approaches where the van der Waals energy term has the greatest weight in the stability of the native dimer. Overall, we provide a detailed study on the Nsp9 dimer of SARS-CoV-2 that may aid in the development of new strategies for the treatment and prevention of COVID-19.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoqian Zhang ◽  
Hua Yu ◽  
Xiangdong Liu ◽  
Chen Song

The calcium release-activated calcium channel, composed of the Orai channel and the STIM protein, plays a crucial role in maintaining the Ca2+ concentration in cells. Previous studies showed that the L138F mutation in the human Orai1 creates a constitutively open channel independent of STIM, causing severe myopathy, but how the L138F mutation activates Orai1 is still unclear. Here, based on the crystal structure of Drosophila melanogaster Orai (dOrai), molecular dynamics simulations for the wild-type (WT) and the L210F (corresponding to L138F in the human Orai1) mutant were conducted to investigate their structural and dynamical properties. The results showed that the L210F dOrai mutant tends to have a more hydrated hydrophobic region (V174 to F171), as well as more dilated basic region (K163 to R155) and selectivity filter (E178). Sodium ions were located deeper in the mutant than in the wild-type. Further analysis revealed two local but essential conformational changes that may be the key to the activation. A rotation of F210, a previously unobserved feature, was found to result in the opening of the K163 gate through hydrophobic interactions. At the same time, a counter-clockwise rotation of F171 occurred more frequently in the mutant, resulting in a wider hydrophobic gate with more hydration. Ultimately, the opening of the two gates may facilitate the opening of the Orai channel independent of STIM.


2021 ◽  
Vol 2133 (1) ◽  
pp. 012016
Author(s):  
Shichao Wang

Abstract Because Janus particles with specific asymmetric nanostructures can be fixed in the oil phase or water respectively, they are more suitable for Pickering emulsion stability. Furthermore, the complete separation of hydrophobic and hydrophobic regions makes adjusting the hydrophobic/hydrophobic region ratio possible by changing the volume ratio. In this study, the preparations of three asymmetric silicon-based amphiphilic Janus nanoparticles are introduced. The methods used are consecutive immobilization, seed emulsion polymerization, and selective encapsulation, respectively. Complete compartmentalization of hydrophilic and hydrophobic domains was realized by anchoring silica with nucleation site, seed emulsion polymerization, or surface charge repulsion. In addition, these nanoparticles can be easily functionalized, bringing new research opportunities to applications in catalysis, adsorption, separation and biomedicine.


2021 ◽  
Author(s):  
Shun Kato ◽  
Kohei Arasaki ◽  
Natsuki Tokutomi ◽  
Yuzuru Imai ◽  
Tsuyoshi Inoshita ◽  
...  

Mammalian syntaxin 17 (Stx17) has several functions, other than membrane fusion, including mitochondrial division, autophagosome formation and lipid droplet expansion. Different from conventional syntaxins, Stx17 has a long C-terminal hydrophobic region with a hairpin-like structure flanked by a basic amino acid-enriched C-terminal tail. Although Stx17 is one of the six ancient SNAREs and present in diverse eukaryotic organisms, it has been lost in multiple lineages during evolution. In the present study, we compared the localization and function of fly and nematode Stx17s expressed in HeLa cells with those of human Stx17. We found that fly Stx17 predominantly localizes to the cytosol and mediates autophagy, but not mitochondrial division. Nematode Stx17, on the other hand, is predominantly present in mitochondria and facilitates mitochondrial division, but is irrelevant to autophagy. These differences are likely due to different structures in the C-terminal tail. Non-participation of fly Stx17 and nematode Stx17 in mitochondrial division and autophagy, respectively, was demonstrated in individual organisms. Our results provide an insight into the evolution of Stx17 in metazoa.


Sign in / Sign up

Export Citation Format

Share Document