Fabrication of Regenerated Cellulose Fibers with Good Strength and Biocompatibility from Green Spinning Process of Ionic Liquid

Author(s):  
Le Zhou ◽  
Zhaoqing Kang ◽  
Yi Nie ◽  
Liying Li
2020 ◽  
Vol 8 (49) ◽  
pp. 18345-18345
Author(s):  
Sherif Elsayed ◽  
Jussi Helminen ◽  
Sanna Hellsten ◽  
Chamseddine Guizani ◽  
Joanna Witos ◽  
...  

2020 ◽  
Vol 8 (37) ◽  
pp. 14217-14227 ◽  
Author(s):  
Sherif Elsayed ◽  
Sanna Hellsten ◽  
Chamseddine Guizani ◽  
Joanna Witos ◽  
Marja Rissanen ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 501-511
Author(s):  
Young Jae Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
Hyun-chul Kim ◽  
Tae Hwan Oh ◽  
...  

2011 ◽  
Vol 81 (18) ◽  
pp. 1949-1958 ◽  
Author(s):  
Wei Jiang ◽  
Liangfeng Sun ◽  
Ayou Hao ◽  
Jonathan Yan Chen

Regenerated cellulose fibers from bagasse and wood were produced under various processing conditions using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) as a solvent. Two different ionic liquid solutions were prepared with 6 wt% of bagasse cellulose and 6 wt% of wood cellulose. The solutions were extruded with a dry-jet and wet-spinning method using water as a coagulation bath. A thermogravimetric analyzer (TGA) was used to measure the thermal properties of these regenerated fibers. Dynamic mechanical analysis (DMA) was used to determine the thermal mechanical property of the regenerated cellulose fibers and wide-angle X-ray diffraction (WAXD) was used to measure the degree of crystallinity, as well as the degree of crystal orientation for those experimental fibers. To evaluate the quantity of ionic liquid residue in the regenerated fibers, the instrumental methods of FT-IR and mass spectrometry were applied to test the residues of BMIMCl in the regenerated fibers. Research results indicated increases in the degree of crystallinity and storage modulus under a higher fiber drawing speed. Both regenerated bagasse film and regenerated wood film had similar thermal properties. However, the regenerated bagasse fibers showed a higher degree of crystallinity, and higher tenacity than the regenerated wood fibers obtained under the same condition. The study also revealed that water treatment would be helpful for eliminating the ionic liquid residue in the regenerated fibers.


Cellulose ◽  
2020 ◽  
Author(s):  
Sherif Elsayed ◽  
Michael Hummel ◽  
Daisuke Sawada ◽  
Chamseddine Guizani ◽  
Marja Rissanen ◽  
...  

Abstract Lyocell fibers have received increased attention during the recent years. This is due to their high potential to satisfy the rising market demand for cellulose-based textiles in a sustainable way. Typically, this technology adopts a dry-jet wet spinning process, which offers regenerated cellulose fibers of excellent mechanical properties. Compared to the widely exploited viscose process, the lyocell technology fosters an eco-friendly process employing green direct solvents that can be fully recovered with low environmental impact. N-methylmorpholine N-oxide (NMMO) is a widely known direct solvent that has proven its success in commercializing the lyocell process. Its regenerated cellulose fibers exhibit higher tenacities and chain orientation compared to viscose fibers. Recently, protic superbase-based ionic liquids (ILs) have also been found to be suitable solvents for lyocell-type fiber spinning. Similar to NMMO, fibers of high mechanical properties can be spun from the cellulose-IL solutions at lower spinning temperatures. In this article, we study the different aspects of producing regenerated cellulose fibers using NMMO and relevant superbase-based ILs. The selected ILs are 1,5-diazabicyclo[4.3.0]non-5-ene-1-ium acetate ([DBNH]OAc), 7-methyl-1,5,7-triazabicyclo[4.4.0] dec-5-enium acetate ([mTBDH]OAc) and 1,8-diazabicyclo[5.4.0]undec-7-enium acetate ([DBUH]OAc). All ILs were used to dissolve a 13 wt% (PHK) cellulose pulp. The study covers the fiber spinning process, including the rheological characterization of the various cellulose solutions. Moreover, we discuss the properties of the produced fibers such as mechanical performance, macromolecular properties and morphology. Graphic abstract


2020 ◽  
Vol 76 (8) ◽  
pp. 257-266
Author(s):  
Jiaping Zhang ◽  
Keita Tominaga ◽  
Naoki Yamagishi ◽  
Yasuo Gotoh

Author(s):  
Aakash Sharma ◽  
Parnashri Wankhede ◽  
Roopali Samant ◽  
Shailesh Nagarkar ◽  
Shirish Thakre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document