regenerated fibers
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
pp. 113-132
Author(s):  
Mukesh Kumar Singh ◽  
Annika Singh
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3937
Author(s):  
Jianjun Guo ◽  
Bo Yang ◽  
Qiang Ma ◽  
Sandra Senyo Fometu ◽  
Guohua Wu

The distinctive mechanical and photothermal properties of Molybdenum sulfide (MoS2) have the potential for improving the functionality and utilization of silk products in various sectors. This paper reports on the preparation of regenerated silk fibroin/molybdenum disulfide (RSF/MoS2) nanoparticles hybrid fiber with different MoS2 nanoparticles contents by wet spinning. The simulated sunlight test indicated that the temperature of 2 wt% RSF/MoS2 nanoparticles hybrid fibers could rise from 20.0 °C to 81.0 °C in 1 min and 98.6 °C in 10 min, exhibiting good thermal stability. It was also demonstrated that fabrics made by manual blending portrayed excellent photothermal properties. The addition of MoS2 nanoparticles could improve the toughness of hybrid fibers, which may be since the mixing of MoS2 nanoparticles hindered the self-assembly of β-sheets in RSF solution in a concentration-dependent manner because RSF/MoS2 nanoparticles hybrid fibers showed a lower β-sheet content, crystallinity, and smaller crystallite size. This study describes a new way of producing high toughness and photothermal properties fibers for multifunctional fibers’ applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2664
Author(s):  
Yu Xue ◽  
Letian Qi ◽  
Zhaoyun Lin ◽  
Guihua Yang ◽  
Ming He ◽  
...  

In this study, a novel type of high-strength regenerated cellulose composite fiber reinforced with cellulose nanofibrils (CNFs) and nanosilica (nano-SiO2) was prepared. Adding 1% CNF and 1% nano-SiO2 to pulp/AMIMCl improved the tensile strength of the composite cellulose by 47.46%. The surface of the regenerated fiber exhibited a scaly structure with pores, which could be reduced by adding CNF and nano-SiO2, resulting in the enhancement of physical strength of regenerated fibers. The cellulose/AMIMCl mixture with or without the addition of nanomaterials performed as shear thinning fluids, also known as “pseudoplastic” fluids. Increasing the temperature lowered the viscosity. The yield stress and viscosity sequences were as follows: RCF-CNF2 > RCF-CNF2-SiO22 > RCF-SiO22 > RCF > RCF-CNF1-SiO21. Under the same oscillation frequency, G’ and G” decreased with the increase of temperature, which indicated a reduction in viscoelasticity. A preferred cellulose/AMIMCl mixture was obtained with the addition of 1% CNF and 1% nano-SiO2, by which the viscosity and shear stress of the adhesive were significantly reduced at 80 °C.


2021 ◽  
Vol 3 (4) ◽  
pp. 2063-2069
Author(s):  
Azusa Togo ◽  
Shiori Suzuki ◽  
Satoshi Kimura ◽  
Tadahisa Iwata

2020 ◽  
Vol 96 ◽  
pp. 103129
Author(s):  
Li Cui ◽  
Ping Wang ◽  
Xuerong Fan ◽  
Qiang Wang ◽  
Ru Yan

2020 ◽  
Vol 92 (9) ◽  
pp. 1327-1327
Author(s):  
S. Thill ◽  
R. Gebhardt

2020 ◽  
pp. 197-215 ◽  
Author(s):  
Manickam Ramesh ◽  
Chinnaiyan Deepa ◽  
Sanjay Mavinkere Rangappa ◽  
Suchart Siengchin
Keyword(s):  

2019 ◽  
Vol 19 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Abdul Basit ◽  
Wasif Latif ◽  
Munir Ashraf ◽  
Abdur Rehman ◽  
Kashif Iqbal ◽  
...  

Abstract The demand of cotton is increasing but its low production rate cannot fulfill the world requirements. The increase in cotton demand has augmented the production of regenerated cellulosic fibers. Furthermore, cotton has proved to be unsustainable because of the use of huge amount of fresh water, pesticides and insecticides. The purpose of this work is to find out the suitable blend/blends of regenerated fibers so as to replace 100% cotton fabrics. Therefore, mechanical and comfort properties of Tencel fabrics blended with other regenerated cellulose fibers have been compared with 100% cotton to achieve the equivalent or even better end properties. Hence, cotton, viscose, Tencel, modal, and bamboo fibers were taken. Plain woven blended fabrics of 100% cotton and 50:50 blends of Tencel with other regenerated fibers were prepared from normal yarn count of 20 tex. The mechanical properties (warp-wise and weft-wise tensile and tear strengths, pilling, and abrasion resistance) and the comfort properties including air permeability, moisture management properties, and thermal resistance were evaluated. It is found that Tencel blended fabrics show better results than 100% cotton fabrics. Therefore, it is concluded that Tencel blended with these regenerated fabrics can be used to replace 100% cotton fabrics.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2640 ◽  
Author(s):  
Maria Amaya Vergara ◽  
Melissa Cortés Gómez ◽  
Maria Restrepo Restrepo ◽  
Jorge Manrique Henao ◽  
Miguel Pereira Soto ◽  
...  

Fique fibers, native to Colombia, are traditionally used for ropes and bags. In the extraction of long fibers for these purposes, the same amount of short fibers is generated; the short fibers are then discarded in the soil or in landfills. This agro-industrial waste is cellulose-rich and can be potentially developed into new biobased products. As an alternative use for these fibers, viscose regenerated fibers with potential applications in the textile industry were developed. Fique waste fibers were pulped (to produce fique cellulose pulp, FCP) using a 33 design of experiment (DOE) to adjust the variables of the whitening treatment, and DOE analysis showed that time and hydrogen peroxide concentration do not have a significant effect on non-cellulosic remotion, unlike temperature. The behavior of this pulp in the production of viscose was compared against that of commercially available wood cellulose pulp (WCP). FCP showed a suitable cellulose content with a high degree of polymerization, which makes it a viable pulp for producing discontinuous viscose rayon filaments. Both pulps showed the same performance in the production of the viscose dope and the same chemical, thermal, and mechanical behavior after being regenerated.


Sign in / Sign up

Export Citation Format

Share Document