scholarly journals On Burenkov's extension operator preserving Sobolev-Morrey spaces on Lipschitz domains

2016 ◽  
Vol 290 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Maria Stella Fanciullo ◽  
Pier Domenico Lamberti
2015 ◽  
Author(s):  
◽  
Kevin Brewster

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Trace and extension theory lay the foundation for solving a plethora of boundary value problems. In developing this theory, one typically needs well-behaved extension operators from a specified domain to the entire Euclidean space. Historically, three extension operators have developed much of the theory in the setting of Lipschitz domains (and rougher domains); those due to A.P. Calderon, E.M. Stein, and P.W. Jones. In this dissertation, we generalize Stein's extension operator to weighted Sobolev spaces and Jones' extension operator to domains with partially vanishing traces. We then develop a rich trace/extension theory as a tool in solving a Poisson boundary value problem with Dirichlet boundary condition where the differential operator in question is of second order in divergence form with bounded coefficients satisfying the Legendre-Hadamard ellipticity condition.


2019 ◽  
Vol 292 (8) ◽  
pp. 1701-1715
Author(s):  
Pier Domenico Lamberti ◽  
Ivan Yuri Violo

2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.


2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


Sign in / Sign up

Export Citation Format

Share Document