Low-frequency deep brain stimulation for Parkinson's disease: Great expectation or false hope?

2016 ◽  
Vol 31 (7) ◽  
pp. 962-967 ◽  
Author(s):  
Lazzaro di Biase ◽  
Alfonso Fasano
Neurosignals ◽  
2013 ◽  
Vol 21 (1-2) ◽  
pp. 89-98 ◽  
Author(s):  
Gaia Giannicola ◽  
Manuela Rosa ◽  
Sara Marceglia ◽  
Emma Scelzo ◽  
Lorenzo Rossi ◽  
...  

2018 ◽  
Vol 50 ◽  
pp. 150-151
Author(s):  
Marcelo D. Mendonça ◽  
Raquel Barbosa ◽  
Alexandra Seromenho-Santos ◽  
Carla Reizinho ◽  
Paulo Bugalho

2013 ◽  
Vol 260 (9) ◽  
pp. 2306-2311 ◽  
Author(s):  
Christos Sidiropoulos ◽  
Richard Walsh ◽  
Christopher Meaney ◽  
Y. Y. Poon ◽  
Melanie Fallis ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Valéria de Carvalho Fagundes ◽  
Carlos R. M. Rieder ◽  
Aline Nunes da Cruz ◽  
Bárbara Costa Beber ◽  
Mirna Wetters Portuguez

Introduction.Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson’s disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD.Methods.Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed.Results.The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS.Conclusion.Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yi-Chieh Chen ◽  
Hau-Tieng Wu ◽  
Po-Hsun Tu ◽  
Chih-Hua Yeh ◽  
Tzu-Chi Liu ◽  
...  

Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment for the motor impairments of patients with advanced Parkinson's disease. However, mood or behavioral changes, such as mania, hypomania, and impulsive disorders, can occur postoperatively. It has been suggested that these symptoms are associated with the stimulation of the limbic subregion of the STN. Electrophysiological studies demonstrate that the low-frequency activities in ventral STN are modulated during emotional processing. In this study, we report 22 patients with Parkinson's disease who underwent STN DBS for treatment of motor impairment and presented stimulation-induced mood elevation during initial postoperative programming. The contact at which a euphoric state was elicited by stimulation was termed as the hypomania-inducing contact (HIC) and was further correlated with intraoperative local field potential recorded during the descending of DBS electrodes. The power of four frequency bands, namely, θ (4–7 Hz), α (7–10 Hz), β (13–35 Hz), and γ (40–60 Hz), were determined by a non-linear variation of the spectrogram using the concentration of frequency of time (conceFT). The depth of maximum θ power is located approximately 2 mm below HIC on average and has significant correlation with the location of contacts (r = 0.676, p < 0.001), even after partializing the effect of α and β, respectively (r = 0.474, p = 0.022; r = 0.461, p = 0.027). The occurrence of HIC was not associated with patient-specific characteristics such as age, gender, disease duration, motor or non-motor symptoms before the operation, or improvement after stimulation. Taken together, these data suggest that the location of maximum θ power is associated with the stimulation-induced hypomania and the prediction of θ power is frequency specific. Our results provide further information to refine targeting intraoperatively and select stimulation contacts in programming.


Sign in / Sign up

Export Citation Format

Share Document