scholarly journals Local existence and uniqueness of the mild solution to the 1D Vlasov-Poisson system with an initial condition of bounded variation

2010 ◽  
Vol 33 (17) ◽  
pp. 2132-2142
Author(s):  
Simon Labrunie ◽  
Sandrine Marchal ◽  
Jean-Rodolphe Roche
2018 ◽  
Vol 68 (4) ◽  
pp. 845-866
Author(s):  
Yumi Yahagi

Abstract A one-dimensional Keller-Segel system which is defined through uniformly elliptic operators having variable coefficients is considered. In the main theorems, the local existence and uniqueness of the mild solution of the system are proved. The main method to construct the mild solution is an argument of successive approximations by means of strongly continuous semi-groups.


Author(s):  
A. Nouri

AbstractA local existence and uniqueness result is proved for the three-dimensional Euler-Poisson system without a pressure term which arises in plasma physics.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1998
Author(s):  
Mohamed Biomy ◽  
Khaled Zennir ◽  
Ahmed Himadan

In this paper, we consider an initial boundary value problem for nonlinear Love equation with infinite memory. By combining the linearization method, the Faedo–Galerkin method, and the weak compactness method, the local existence and uniqueness of weak solution is proved. Using the potential well method, it is shown that the solution for a class of Love-equation exists globally under some conditions on the initial datum and kernel function.


1998 ◽  
Vol 08 (03) ◽  
pp. 431-444 ◽  
Author(s):  
JOËL CHASKALOVIC

Mathematical models applied to tornadoes describe these kinds of flows as an axisymmetric fluid motion which is restricted for not developing a source or a sink near the vortex line. Here, we propose the genesis of a family of a source/sink line into a singular updraft which can modeled one of the step of the genesis of a tornado. This model consists of a three-parameter family of fluid motions, satisfying the steady and incompressible Navier–Stokes equations, which vanish at the ground. We establish the local existence and uniqueness for these fields, at the neighborhood of a nonrotating singular updraft.


2009 ◽  
Vol 09 (03) ◽  
pp. 437-477 ◽  
Author(s):  
AURÉLIEN DEYA ◽  
SAMY TINDEL

We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory called algebraic integration. In the Young case, that is for a driving signal with Hölder exponent γ > 1/2, we obtain a global solution, and are able to handle the case of a singular Volterra coefficient. In case of a driving signal with Hölder exponent 1/3 < γ < 1/2, we get a local existence and uniqueness theorem. The results are easily applied to the fractional Brownian motion with Hurst coefficient H > 1/3.


Sign in / Sign up

Export Citation Format

Share Document