A new method for solving variable coefficients fractional differential equations based on a hybrid of Bernoulli polynomials and block pulse functions

Author(s):  
Bo Zhang ◽  
Yinggan Tang ◽  
Xuguang Zhang
2018 ◽  
Vol 20 ◽  
pp. 02001
Author(s):  
M. Razzaghi

In this paper, a new numerical method for solving the fractional differential equations with boundary value problems is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann-Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce the solution of the boundary value problems for fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


Author(s):  
Carl F. Lorenzo ◽  
Rachid Malti ◽  
Tom T. Hartley

A new method for the solution of linear constant coefficient fractional differential equations of any commensurate order based on the Laplace transforms of the fractional meta-trigonometric functions and the R-function is presented. The new method simplifies the solution of such equations. A simplifying characterization that reduces the number of parameters in the fractional meta-trigonometric functions is introduced.


2020 ◽  
Vol 24 (4) ◽  
pp. 2535-2542
Author(s):  
Yong-Ju Yang

This paper proposes a new method to solve local fractional differential equation. The method divides the studied equation into a system, where the initial solution is obtained from a residual equation. The new method is therefore named as the fractional residual method. Examples are given to elucidate its efficiency and reliability.


Sign in / Sign up

Export Citation Format

Share Document