On coupled nonlinear evolution system of fractional order with a proportional delay

Author(s):  
Israr Ahmad ◽  
Hussam Alrabaiah ◽  
Kamal Shah ◽  
Juan J. Nieto ◽  
Ibrahim Mahariq ◽  
...  
Author(s):  
Ahmet Bekir ◽  
Esin Aksoy

The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 218 ◽  
Author(s):  
Muhammad Sher ◽  
Kamal Shah ◽  
Michal Fečkan ◽  
Rahmat Ali Khan

With the help of the topological degree theory in this manuscript, we develop qualitative theory for a class of multi-terms fractional order differential equations (FODEs) with proportional delay using the Caputo derivative. In the same line, we will also study various forms of Ulam stability results. To clarify our theocratical analysis, we provide three different pertinent examples.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tarikul Islam ◽  
Armina Akter

PurposeFractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.Design/methodology/approachThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=∑i=0nai(DξαG/G)i/∑i=0nbi(DξαG/G)i.FindingsAchieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.Originality/valueThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.


2012 ◽  
Vol 706 ◽  
pp. 431-469 ◽  
Author(s):  
Xuesong Wu ◽  
Feng Tian

AbstractIt has been observed experimentally that when a free shear layer is perturbed by a disturbance consisting of two waves with frequencies ${\omega }_{0} $ and ${\omega }_{1} $, components with the combination frequencies $(m{\omega }_{0} \pm n{\omega }_{1} )$ ($m$ and $n$ being integers) develop to a significant level thereby causing flow randomization. This spectral broadening process is investigated theoretically for the case where the frequency difference $({\omega }_{0} \ensuremath{-} {\omega }_{1} )$ is small, so that the perturbation can be treated as a modulated wavetrain. A nonlinear evolution system governing the spectral dynamics is derived by using the non-equilibrium nonlinear critical layer approach. The formulation provides an appropriate mathematical description of the physical concepts of sideband instability and amplitude–phase modulation, which were suggested by experimentalists. Numerical solutions of the nonlinear evolution system indicate that the present theory captures measurements and observations rather well.


Sign in / Sign up

Export Citation Format

Share Document