scholarly journals Further fresh and general traveling wave solutions to some fractional order nonlinear evolution equations in mathematical physics

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tarikul Islam ◽  
Armina Akter

PurposeFractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.Design/methodology/approachThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=∑i=0nai(DξαG/G)i/∑i=0nbi(DξαG/G)i.FindingsAchieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.Originality/valueThe rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.

2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
E. M. E. Zayed ◽  
M. A. M. Abdelaziz

We apply the two-variable (, )-expansion method to construct new exact traveling wave solutions with parameters of the nonlinear ()-dimensional KdV-mKdV equation. This method can be thought of as the generalization of the well-known ()-expansion method given recently by M. Wang et al. When the parameters are replaced by special values, the well-known solitary wave solutions of this equation are rediscovered from the traveling waves. It is shown that the proposed method provides a more general powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.


2015 ◽  
Vol 7 (3) ◽  
pp. 1-10 ◽  
Author(s):  
M. N. Alam ◽  
M. G. Hafez ◽  
M. A. Akbar ◽  
H. -O. -Roshid

The exp(?(?))-expansion method is applied to find exact traveling wave solutions to the (2+1)-dimensional Boussinesq equation which is an important equation in mathematical physics. The traveling wave solutions are expressed in terms of the exponential functions, the hyperbolic functions, the trigonometric functions and the rational functions. The procedure is simple, direct and constructive without the help of a computer algebra system. The applied method will be used in further works to establish more new solutions for other kinds of nonlinear evolution equations arising in mathematical physics and engineering.


Author(s):  
A. R. Shehata ◽  
Safaa S. M. Abu-Amra

In this article, A Variation of -Expansion Method and -Expansion Method have been applied to find the traveling wave solutions of the (3+1)-dimensional Zakhrov-Kuznetsov (ZK) equation, the (3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional generalized Shallow water equation. The efficiency of these methods for finding the exact solutions have been demonstrated. As a result, some new exact traveling wave solutions are obtained which include solitary wave solutions. It is shown that the methods are effective and can be used for many other Nonlinear Evolution Equations (NLEEs) in mathematical physics. In this article, A Variation of -Expansion Method and -Expansion Method have been applied to find the traveling wave solutions of the (3+1)-dimensional Zakhrov-Kuznetsov (ZK) equation, the (3+1)-dimensional Potential-YTSF Equation and the (3+1)-dimensional generalized Shallow water equation. The efficiency of these methods for finding the exact solutions have been demonstrated. As a result, some new exact traveling wave solutions are obtained which include solitary wave solutions. It is shown that the methods are effective and can be used for many other Nonlinear Evolution Equations (NLEEs) in mathematical physics.


Author(s):  
Harun-Or-Roshid .

The extended (G0 /G)-expansion method is significant for finding the exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. In this paper, we inhanced new traveling wave solutions of right-handed non-commutative burg- ers equations via extended (G0 /G)-expansion. Implementation of the method for searching exact solutions of the equation provided many new solutions which can be used to exploy some practically physical and machanical phenomena. Moreover, when the parameters are re- placed by special values, the well-known solitary wave solutions of the equation rediscovered from the traveling wave solutions and included free parameters may imply some physical meaningful results in fluid mechanics, gas dynamics, and traffic flow.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


2014 ◽  
Vol 6 (2) ◽  
pp. 273-284 ◽  
Author(s):  
K. Khan ◽  
M. A. Akbar

In this article, the modified simple equation (MSE) method has been executed to find the traveling wave solutions of the coupled (1+1)-dimensional Broer-Kaup (BK) equations and the dispersive long wave (DLW) equations. The efficiency of the method for finding exact solutions has been demonstrated. It has been shown that the method is direct, effective and can be used for many other nonlinear evolution equations (NLEEs) in mathematical physics. Moreover, this procedure reduces the large volume of calculations.  Keywords: MSE method; NLEE; BK equations; DLW equations; Solitary wave solutions. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i2.16671 J. Sci. Res. 6 (2), 273-284 (2014)  


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fu Zhang ◽  
Jian-ming Qi ◽  
Wen-jun Yuan

We employ the complex method to obtain all meromorphic exact solutions of complex Drinfeld-Sokolov equations (DS system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all constant and simply periodic traveling wave exact solutions of the equations (DS) are solitary wave solutions, the complex method is simpler than other methods and there exist simply periodic solutionsvs,3(z)which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document