Bandwidth enhancement and cross-polarization suppression in ultrawideband microstrip antenna with defected ground plane

2014 ◽  
Vol 56 (9) ◽  
pp. 2141-2146 ◽  
Author(s):  
Mukesh Kumar Khandelwal ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Sachin Kumar ◽  
A. K. Gautam
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
N. Prombutr ◽  
P. Kirawanich ◽  
P. Akkaraekthalin

This article presents a bandwidth enhancing technique using a modified ground plane with diagonal edges, rectangular slot, and T-shape cut for the design of compact antennas. The proposed low-cost, compact-size circular patch antenna on 3 cm 5.1 cm printed circuit board (FR-4) is designed and validated through simulations and experiments. Results show that the T-shaped ground plane with the presence of the diagonal cuts at the top corners and the rectangular slots can increase the bandwidth. Return losses of 19 and 26 dB for the first and second resonant frequencies, respectively, can be achieved when the depth of the diagonal cut is 5 mm, the dimension of each rectangular slot is  mm, and the T-shaped size is  mm, providing a 28.67% wider bandwidth than FCC standard.


2012 ◽  
Vol 49 (19) ◽  
pp. 17-23 ◽  
Author(s):  
Bharti Gupta ◽  
Sangeeta Nakhate ◽  
Madhu Shandilya

Sign in / Sign up

Export Citation Format

Share Document